463 research outputs found

    Sharing science, building bridges, and enhancing impact: Public-Private Partnerships in the CGIAR

    Get PDF
    "This study, which examines the role of public–private partnerships in international agricultural research, is intended to provide policymakers, research managers, and business decisionmakers with an understanding of how such partnerships operate and how they potentially contribute to food security and poverty reduction in developing countries. The study examines public–private partnerships in light of persistent market failure, institutional constraints, and systemic weaknesses, which impede the exchange of potentially pro-poor knowledge and technology. The study focuses on three key issues: whether public–private partnerships contribute to reducing the cost of research, whether they add value to research by facilitating innovation, and whether they enhance the impact of research on smallholders and other marginalized groups in developing-country agriculture. The study examines 75 projects undertaken by the research centers and programs of the Consultative Group on International Agricultural Research (CGIAR) in partnership with various types of private firms. Data and information were obtained through document analysis, semi-structured interviews with key informants, and an email survey of CGIAR centers. The resulting analysis provides a characterization of public–private partnerships in the CGIAR and describes the factors that contribute to their success. These finding are important to improving both public policy and organizational practices in the international agricultural research system." - from authors' abstract.Agricultural R&D, CGIAR, Innovation, Public-private partnerships,

    Viscous vortex flows

    Get PDF
    Several computational studies are currently being pursued that focus on various aspects of representing the entire lifetime of the viscous trailing vortex wakes generated by an aircraft. The formulation and subsequent near-wing development of the leading-edge vortices formed by a delta wing are being calculated at modest Reynolds numbers using a three-dimensional, time-dependent Navier-Stokes code. Another computational code was developed to focus on the roll-up, trajectory, and mutual interaction of trailing vortices further downstream from the wing using a two-dimensional, time-dependent, Navier-Stokes algorithm. To investigate the effect of a cross-wind ground shear flow on the drift and decay of the far-field trailing vortices, a code was developed that employs Euler equations along with matched asymptotic solutions for the decaying vortex filaments. And finally, to simulate the conditions far down stream after the onset of the Crow instability in the vortex wake, a full three-dimensional, time-dependent Navier-Stokes code was developed to study the behavior of interacting vortex rings

    Lincoln in City Point.

    Get PDF
    The lithograph depicts a German artist\u27s vision of Abraham Lincoln visiting Union troops before the surrender of Robert E. Lee during the American Civil War. Depicted at the Union Headquarters in City Point, Virginia, Lincoln is shown on horseback alongside Ulysses S. Grant and Secretary of War Stanton. Other Union soldiers and liberated enslaved persons are also shown. The destruction depicted in the image did not take place in at this particular location.https://scholarsjunction.msstate.edu/fvw-artifacts/4347/thumbnail.jp

    Refined AFC-Enabled High-Lift System Integration Study

    Get PDF
    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed, as are AFC architecture aspects such as AFC unit placement, number AFC units, operating pressures, mass flow rates, and steady versus unsteady AFC applications. These efforts led to the development of a novel traversing AFC actuation concept which is efficient in that it reduces the AFC mass flow requirements by as much as an order of magnitude compared to previous AFC technologies, and it is predicted to be effective in driving the aerodynamic performance of a mechanical simplified high-lift system close to that of the reference conventional high-lift system. Conceptual system integration studies were conducted for the AFC-enhanced high-lift concept applied to a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. The results from these design integration assessments identify overall system performance improvement opportunities over conventional high-lift systems that suggest the viability of further technology maturation efforts for AFC-enabled high lift flap systems. To that end, technical challenges are identified associated with the application of AFC-enabled high-lift systems to modern transonic commercial transports for future technology maturation efforts

    Effect of Mycophenolate Mofetil on Plasma Bioelements in Renal Transplant Recipients

    Get PDF
    The proper concentrations of plasma bioelements may favorably reduce the incidence of metabolic disorders, which often occur during immunosuppressive therapy. Mycophenolate mofetil (MMF) is currently one of the most frequently administered immunosuppressive agents; however, MMF treatment is often related to gastrointestinal side effects. The aim of this study was thus to verify whether the MMF treatment itself, or its metabolite pharmacokinetics, has an effect on the concentrations of plasma bioelements. To determine this, the effect of MMF on the levels of both major (sodium [Na], potassium [K], calcium [Ca], magnesium [Mg]), and trace (iron [Fe], zinc [Zn], copper [Cu]) plasma bioelements in 61 renal transplant recipients was assessed in comparison to a control group (n = 45). The pharmacokinetic parameters of mycophenolic acid were determined by the high-performance liquid chromatography method. All patients filled out a 24-h diet history questionnaire. The results showed high plasma concentrations of Fe and low plasma concentrations of Mg and Zn as compared with diagnostic norms. The patients treated with MMF had significantly lower plasma Na (P < 0.001) and significantly higher plasma Zn (P = 0.030) and Cu concentrations (P < 0.001). In conclusion, MMF treatment was found to affect plasma Fe, Zn, and Cu levels by increasing their concentrations while decreasing the plasma Na concentration. Mg and Zn deficiencies, as well as excessive Fe levels, are frequently observed irrespective of the immunosuppressive regimen applied, which suggests that monitoring of these bioelements may be favorable

    Effect of exercise on peritoneal microenvironment and progression of ovarian cancer

    Get PDF
    Ovarian cancer is one of the deadliest gynecological malignancies and lacks treatments that do not significantly impact patient health-related quality of life. Exercise has been associated with reduced cancer risk and improved clinical outcomes; however the underlying molecular mechanisms are unknown. In this study, we utilized a treadmill-running exercise model to investigate the effects of exercise on high-grade serous ovarian carcinoma (HGSOC) progression and chemotherapy outcomes. We found that treadmill-running suppressed peritoneal colonization of tumors in a syngeneic mouse ovarian cancer model. Acute exercise stimulated the production of CCL2 and IL-15 in the peritoneal microenvironment while downregulating CCL22, VEGF, and CCL12. Using a co-culture model, we demonstrated the role of CCL2 in mediating the activity of peritoneal cells to inhibit cancer cell viability. We showed that the activation of M1 macrophages may contribute to the exercise-induced changes in the peritoneal microenvironment. We identified that chronic exercise modulates gene expression of intraperitoneal fat tissues related to lipid formation, thermogenesis, browning, and inflammation, which can contribute to inhibiting the colonization of metastatic ovarian cancer. Treadmill running also lowered blood urea nitrogen levels and reduced incidence of neutropenia and thrombocytopenia during chemotherapy in a mouse model, suggesting the potential beneficial effects of exercise in improving chemotherapy outcomes. Our data provided new insights into the acute and chronic effects of physical activity on ovarian cancer at the molecular and in vivo levels

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    Coordinating brain-distributed network activities in memory resistant to extinction

    Get PDF
    Certain memories resist extinction to continue invigorating maladaptive actions. The robustness of these memories could depend on their widely distributed implementation across populations of neurons in multiple brain regions. However, how dispersed neuronal activities are collectively organized to underpin a persistent memory-guided behavior remains unknown. To investigate this, we simultaneously monitored the prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and ventral tegmental area (VTA) of the mouse brain from initial recall to post-extinction renewal of a memory involving cocaine experience. We uncover a higher-order pattern of short-lived beta-frequency (15–25 Hz) activities that are transiently coordinated across these networks during memory retrieval. The output of a divergent pathway from upstream VTA glutamatergic neurons, paced by a slower (4-Hz) oscillation, actuates this multi-network beta-band coactivation; its closed-loop phase-informed suppression prevents renewal of cocaine-biased behavior. Binding brain-distributed neural activities in this temporally structured manner may constitute an organizational principle of robust memory expression
    corecore