7 research outputs found

    Antibody Array-Generated Profiles of Cytokine Release from THP-1 Leukemic Monocytes Exposed to Different Amphotericin B Formulations

    No full text
    Cytokine antibody arrays were used to establish the profiles of cytokine release from THP-1 monocytes exposed to different amphotericin B (AMB) drug delivery systems. Fungizone (FZ) and Amphotec (ABCD) caused the release of significantly more inflammatory molecules and the release of inflammatory molecules at higher levels than either AmBisome (L-AMB) or Abelcet (ABLC) after 6 h of treatment. Specifically, tumor necrosis factor alpha (TNF-α), interleukin-8 (IL-8), GRO-(αβγ), monocyte chemoattractant protein-1 (MCP-1), RANTES, IL-10, and IL-6 were detected and semiquantified with a chemiluminscence imaging system. TNF-α, IL-8, and MCP-1 were the most predominant; however, little if any TNF-α was present in ABLC- or L-AMB-treated cultures. The TNF- α and IL-8 levels determined by quantitative enzyme-linked immunosorbent assay correlated with the relative cytokine levels measured by using the antibody arrays. Although the viabilities of THP-l monocytes in all AMB-treated cultures were similar by trypan blue exclusion, the amount of lactic dehydrogenase released was significantly larger in FZ- and ABCD-treated cultures than in L-AMB- and ABLC-treated cultures, indicating more membrane perturbations with those formulations. Membrane cation channel formation was also measured in model cholesterol-containing large unilamellar vesicles to directly assess the ion channel formation ability of the system. Only FZ and ABCD induced significant ion currents at concentrations less than 1.5 × 10(−5) M. These results may help provide rationales for the immediate cytokine-mediated side effects observed with FZ and ABCD and the reduced side effects observed with L-AMB and ABLC

    Effect of Heat-Treated Amphotericin B on Renal and Fungal Cytotoxicity

    No full text
    The purpose of this investigation was to determine the cytotoxicity of amphotericin B (AMB; trade name Fungizone [FZ]) following the administration of FZ and a heat-treated form of FZ (HFZ) to LLC-PK(1) pig kidney cells and Cryptococcus neoformans var. gattii cells. HFZ was significantly less toxic to kidney cells than FZ at all concentrations tested. For both FZ and HFZ, the concentration range which resulted in a 50% reduction of the growth of fungal cells was 0.125 to 1 mg/ml. These findings suggest that heat treatment decreases AMB's renal cytotoxicity without modifying its antifungal activity

    A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions

    No full text
    Methanobactins (mb) are low-molecular mass, copper-binding molecules secreted by most methanotrophic bacteria. These molecules have been identified for a number of methanotrophs, but only the one produced by Methylosinus trichosporium OB3b (mb-OB3b) has to date been chemically characterized. Here we report the chemical characterization and copper binding properties of a second methanobactin, which is produced by Methylocystis strain SB2 (mb-SB2). mb-SB2 shows some significant similarities to mb-OB3b, including its spectral and metal binding properties, and its ability to bind and reduce Cu(II) to Cu(I). Like mb-OB3b, mb-SB2 contains two five-member heterocyclic rings with associated enethiol groups, which together form the copper ion binding site. mb-SB2 also displays some significant differences compared to mb-OB3b, including the number and types of amino acids used to complete the structure of the molecule, the presence of an imidazolone ring in place of one of the oxazolone rings found in mb-OB3b, and the presence of a sulfate group not found in mb-OB3b. The sulfate is bonded to a threonine-like side chain that is associated with one of the heterocyclic rings and may represent the first example of this type of sulfate group found in a bacterially derived peptide. Acid-catalyzed hydrolysis and decarboxylation of the oxazolone rings found in mb-OB3b and mb-SB2 produce pairs of amino acid residues and suggest that both mb-OB3b and mb-SB2 are derived from peptides. In support of this, the gene for a ribosomally produced peptide precursor for mb-OB3b has been identified in the genome of M. trichosporium OB3b. The gene sequence indicates that the oxazolone rings in mb-OB3b are derived from the combination of a cysteine residue and the carbonyl from the preceding residue in the peptide sequence. Taken together, the results suggest methanobactins make up a structurally diverse group of ribosomally produced, peptide-derived molecules, which share a common pair of five-member rings with associated enethiol groups that are able to bind, reduce, and stabilize copper ions in an aqueous environment

    Antibacterial Spirobisnaphthalenes from the North American Cup Fungus <i>Urnula craterium</i>

    No full text
    Urnucratins A–C (<b>1</b>–<b>3</b>), which possess an unusual bisnaphthospiroether skeleton with one oxygen bridge and one C–C bridge and represent a new subclass of bisnaphthalenes, were isolated from the North American cup fungus <i>Urnula craterium</i>. Their structures, including absolute configurations, were determined by means of HRMS, NMR, and quantum chemical CD calculations. Urnucratin A (<b>1</b>) was found to be active against methicillin-resistant <i>Staphylococcus aureus</i>, vancomycin-resistant <i>Enterococcus faecium</i>, and <i>Streptococcus pyogenes</i> with MIC values of 2, 1, and 0.5 μg/mL, respectively
    corecore