103 research outputs found

    CamAPS FX hybrid closed-loop with ultra-rapid lispro compared with standard lispro in adults with type 1 diabetes: a double-blind, randomized, crossover study.

    Get PDF
    INTRODUCTION To evaluate hybrid closed-loop with ultra-rapid insulin lispro (Lyumjev) compared with hybrid closed-loop with standard insulin lispro in adults with type 1 diabetes. MATERIALS AND METHODS In a single-center, double-blind, randomized, crossover study, 28 adults with type 1 diabetes (mean±SD: age 44.5±10.7, HbA1c 7.1±0.9% [54±10mmol/mol]) underwent two 8-week periods comparing hybrid closed-loop with ultra-rapid insulin lispro and hybrid closed-loop with standard insulin lispro in random order. CamAPS FX closed-loop system was used in both periods. RESULTS In an intention-to-treat analysis, the proportion of time sensor glucose was in target range (3.9 to 10mmol/L; primary endpoint) was greater with ultra-rapid lispro compared with standard insulin lispro (mean±SD: 78.7±9.8% vs. 76.2±9.6%; mean difference 2.5 percentage points [95%CI 0.8 to 4.2]; p=0.005). Mean sensor glucose was lower with ultra-rapid lispro compared with standard insulin lispro (7.9±0.8mmol/L vs. 8.1±0.9mmol/L; p=0.048). The proportion of time with sensor glucose <3.9mmol/L was similar between interventions (median [IQR] ultra-rapid lispro 2.3% [1.3-2.7%] vs. standard insulin lispro 2.1% [1.4-3.3%]; p=0.33). No severe hypoglycemia or ketoacidosis occurred. CONCLUSIONS The use of ultra-rapid lispro with CamAPS FX hybrid closed-loop increases time in range and reduces mean glucose with no difference in hypoglycemia compared with standard insulin lispro in adults with type 1 diabetes

    Closed-loop insulin delivery in inpatients with type 2 diabetes: a randomised, parallel-group trial.

    Get PDF
    BACKGROUND: We assessed whether fully closed-loop insulin delivery (the so-called artificial pancreas) is safe and effective compared with standard subcutaneous insulin therapy in patients with type 2 diabetes in the general ward. METHODS: For this single-centre, open-label, parallel-group, randomised controlled trial, we enrolled patients aged 18 years or older with type 2 diabetes who were receiving insulin therapy. Patients were recruited from general wards at Addenbrooke's Hospital, Cambridge, UK. Participants were randomly assigned (1:1) by a computer-generated minimisation method to receive closed-loop insulin delivery (using a model-predictive control algorithm to direct subcutaneous delivery of rapid-acting insulin analogue without meal-time insulin boluses) or conventional subcutaneous insulin delivery according to local clinical guidelines. The primary outcome was time spent in the target glucose concentration range of 5·6-10·0 mmol/L during the 72 h study period. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01774565. FINDINGS: Between Feb 20, 2015, and March 24, 2016, we enrolled 40 participants, of whom 20 were randomly assigned to the closed-loop intervention group and 20 to the control group. The proportion of time spent in the target glucose range was 59·8% (SD 18·7) in the closed-loop group and 38·1% (16·7) in the control group (difference 21·8% [95% CI 10·4-33·1]; p=0·0004). No episodes of severe hypoglycaemia or hyperglycaemia with ketonaemia occurred in either group. One adverse event unrelated to study devices occurred during the study (gastrointestinal bleed). INTERPRETATION: Closed-loop insulin delivery without meal-time boluses is effective and safe in insulin-treated adults with type 2 diabetes in the general ward. FUNDING: Diabetes UK; European Foundation for the Study of Diabetes; JDRF; National Institute for Health Research Cambridge Biomedical Research Centre; Wellcome Trust.This study was supported by Diabetes UK (#14/0004878) and the European Foundation for the Study of Diabetes. Additional support for research on the artificial pancreas was received from the Juvenile Diabetes Research Foundation, National Institute for Health Research Cambridge Biomedical Research Centre, and Wellcome Strategic Award (100574/Z/12/Z).This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/S2213-8587(16)30280-

    Closed-Loop Insulin Delivery for Glycemic Control in Noncritical Care.

    Get PDF
    BACKGROUND: In patients with diabetes, hospitalization can complicate the achievement of recommended glycemic targets. There is increasing evidence that a closed-loop delivery system (artificial pancreas) can improve glucose control in patients with type 1 diabetes. We wanted to investigate whether a closed-loop system could also improve glycemic control in patients with type 2 diabetes who were receiving noncritical care. METHODS: In this randomized, open-label trial conducted on general wards in two tertiary hospitals located in the United Kingdom and Switzerland, we assigned 136 adults with type 2 diabetes who required subcutaneous insulin therapy to receive either closed-loop insulin delivery (70 patients) or conventional subcutaneous insulin therapy, according to local clinical practice (66 patients). The primary end point was the percentage of time that the sensor glucose measurement was within the target range of 100 to 180 mg per deciliter (5.6 to 10.0 mmol per liter) for up to 15 days or until hospital discharge. RESULTS: The mean (±SD) percentage of time that the sensor glucose measurement was in the target range was 65.8±16.8% in the closed-loop group and 41.5±16.9% in the control group, a difference of 24.3±2.9 percentage points (95% confidence interval [CI], 18.6 to 30.0; P<0.001); values above the target range were found in 23.6±16.6% and 49.5±22.8% of the patients, respectively, a difference of 25.9±3.4 percentage points (95% CI, 19.2 to 32.7; P<0.001). The mean glucose level was 154 mg per deciliter (8.5 mmol per liter) in the closed-loop group and 188 mg per deciliter (10.4 mmol per liter) in the control group (P<0.001). There was no significant between-group difference in the duration of hypoglycemia (as defined by a sensor glucose measurement of <54 mg per deciliter; P=0.80) or in the amount of insulin that was delivered (median dose, 44.4 U and 40.2 U, respectively; P=0.50). No episode of severe hypoglycemia or clinically significant hyperglycemia with ketonemia occurred in either trial group. CONCLUSIONS: Among inpatients with type 2 diabetes receiving noncritical care, the use of an automated, closed-loop insulin-delivery system resulted in significantly better glycemic control than conventional subcutaneous insulin therapy, without a higher risk of hypoglycemia. (Funded by Diabetes UK and others; ClinicalTrials.gov number, NCT01774565 .)

    Listening to women: experiences of using closed-loop in type 1 diabetes pregnancy

    Get PDF
    Introduction: Recent high-profile calls have emphasized that women's experiences should be considered in maternity care provisioning. We explored women's experiences of using closed-loop during type 1 diabetes (T1D) pregnancy to inform decision-making about antenatal rollout and guidance and support given to future users. Methods: We interviewed 23 closed-loop participants in the Automated insulin Delivery Among Pregnant women with T1D (AiDAPT) trial after randomization to closed-loop and ∼20 weeks later. Data were analyzed thematically. Results: Women described how closed-loop lessened the physical and mental demands of diabetes management, enabling them to feel more normal and sleep better. By virtue of spending increased time-in-range, women also worried less about risks to their baby and being judged negatively by health care professionals. Most noted that intensive input and support during early pregnancy had been crucial to adjusting to, and developing confidence in, the technology. Women emphasized that attaining pregnancy glucose targets still required ongoing effort from themselves and the health care team. Women described needing education to help them determine when, and how, to intervene and when to allow the closed-loop to operate without interference. All women reported more enjoyable pregnancy experiences as a result of using closed-loop; some also noted being able to remain longer in paid employment. Conclusions: Study findings endorse closed-loop use in T1D pregnancy by highlighting how the technology can facilitate positive pregnancy experiences. To realize fully the benefits of closed-loop, pregnant women would benefit from initial intensive oversight and support together with closed-loop specific education and training. Clinical Trial Registration number: NCT04938557

    Variability of Insulin Requirements Over 12 Weeks of Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes.

    Get PDF
    OBJECTIVE: To quantify variability of insulin requirements during closed-loop insulin delivery. RESEARCH DESIGN AND METHODS: We retrospectively analyzed overnight, daytime, and total daily insulin amounts delivered during a multicenter closed-loop trial involving 32 adults with type 1 diabetes. Participants applied hybrid day-and-night closed-loop insulin delivery under free-living home conditions over 12 weeks. The coefficient of variation was adopted to measure variability of insulin requirements in individual subjects. RESULTS: Data were analyzed from 1,918 nights, 1,883 daytime periods and 1,564 total days characterized by closed-loop use over 85% of time. Variability of overnight insulin requirements (mean [SD] coefficient of variation 31% [4]) was nearly twice as high as variability of total daily requirements (17% [3], P < 0.001) and was also higher than variability of daytime insulin requirements (22% [4], P < 0.001). CONCLUSIONS: Overnight insulin requirements were significantly more variable than daytime and total daily amounts. This may explain why some people with type 1 diabetes report frustrating variability in morning glycemia.Seventh Framework Programme of the European Union (ICT FP7- 247138). Additional support for the Artificial Pancreas work by JDRF, National Institute for Health Research Cambridge Biomedical Research Centre and Wellcome Strategic Award (100574/Z/12/Z). Abbott Diabetes Care supplied discounted continuous glucose monitoring devices, sensors, and communication protocol to facilitate real-time connectivity. We acknowledge support by the staff at the Addenbrooke’s Wellcome Trust Clinical Research Facility. Jasdip Mangat and John Lum (Jaeb Center) supported development and validation of the closed-loop system. Josephine Hayes (University of Cambridge) provided administrative support. Karen Whitehead (University of Cambridge) provided laboratory support. We acknowledge support by the staff at Profil Institut; Krisztina Schmitz-Grozs provided support as a research physician, Martina Haase supported the study as an insulin pump expert, and Maren Luebkert, Kirstin Kuschma and Elke Przetak provided administrative, coordinating and documentation support.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/dc15-262

    Fully automated closed-loop glucose control compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis: an open-label, randomized crossover trial

    Get PDF
    Funder: CB was supported by a grant from The Novo Nordisk UK Research FoundationFunder: LB was supported by a grant of the Swiss Society for Endocrinology and a grant of the Diabetes and Swiss Kidney Foundation.Funder: Supported by National Institute for Health Research Cambridge Biomedical Research Centre.Abstract: We evaluated the safety and efficacy of fully closed-loop insulin therapy compared with standard insulin therapy in adults with type 2 diabetes requiring dialysis. In an open-label, multinational, two-center, randomized crossover trial, 26 adults with type 2 diabetes requiring dialysis (17 men, 9 women, average age 68 ± 11 years (mean ± s.d.), diabetes duration of 20 ± 10 years) underwent two 20-day periods of unrestricted living, comparing the Cambridge fully closed-loop system using faster insulin aspart (‘closed-loop’) with standard insulin therapy and a masked continuous glucose monitor (‘control’) in random order. The primary endpoint was time in target glucose range (5.6–10.0 mmol l−1). Thirteen participants received closed-loop first and thirteen received control therapy first. The proportion of time in target glucose range (5.6–10.0 mmol l−1; primary endpoint) was 52.8 ± 12.5% with closed-loop versus 37.7 ± 20.5% with control; mean difference, 15.1 percentage points (95% CI 8.0–22.2; P < 0.001). Mean glucose was lower with closed-loop than control (10.1 ± 1.3 versus 11.6 ± 2.8 mmol l−1; P = 0.003). Time in hypoglycemia (<3.9 mmol l−1) was reduced with closed-loop versus control (median (IQR) 0.1 (0.0–0.4%) versus 0.2 (0.0–0.9%); P = 0.040). No severe hypoglycemia events occurred during the control period, whereas one severe hypoglycemic event occurred during the closed-loop period, but not during closed-loop operation. Fully closed-loop improved glucose control and reduced hypoglycemia compared with standard insulin therapy in adult outpatients with type 2 diabetes requiring dialysis. The trial registration number is NCT04025775

    Day and night home closed-loop insulin delivery in adults with type 1 diabetes: three-center randomized crossover study.

    Get PDF
    OBJECTIVE: To evaluate the feasibility of day and night closed-loop insulin delivery in adults with type 1 diabetes under free-living conditions. RESEARCH DESIGN AND METHODS: Seventeen adults with type 1 diabetes on insulin pump therapy (means ± SD age 34 ± 9 years, HbA1c 7.6 ± 0.8%, and duration of diabetes 19 ± 9 years) participated in an open-label multinational three-center crossover study. In a random order, participants underwent two 8-day periods (first day at the clinical research facility followed by 7 days at home) of sensor-augmented insulin pump therapy (SAP) or automated closed-loop insulin delivery. The primary end point was the time when sensor glucose was in target range between 3.9 and 10.0 mmol/L during the 7-day home phase. RESULTS: During the home phase, the percentage of time when glucose was in target range was significantly higher during closed-loop compared with SAP (median 75% [interquartile range 61-79] vs. 62% [53-70], P = 0.005). Mean glucose (8.1 vs. 8.8 mmol/L, P = 0.027) and time spent above target (P = 0.013) were lower during closed loop, while time spent below target was comparable (P = 0.339). Increased time in target was observed during both daytime (P = 0.017) and nighttime (P = 0.013). CONCLUSIONS: Compared with SAP, 1 week of closed-loop insulin delivery at home reduces mean glucose and increases time in target without increasing the risk of hypoglycemia in adults with relatively well-controlled type 1 diabetes.This is the author accepted manuscript. The final version can be found published here: http://care.diabetesjournals.org/content/37/7/1931.abstract

    UK's Association of British Clinical Diabetologist's Diabetes Technology Network (ABCD-DTN): Best practice guide for hybrid closed-loop therapy

    Get PDF
    This best practice guide is written with the aim of providing an overview of current hybrid closed-loop (HCL) systems in use within the United Kingdom's (UK) National Health Service (NHS) and to provide education and advice for their management on both an individual and clinical service level. The environment of diabetes technology, and particularly HCL systems, is rapidly evolving. The past decade has seen unprecedented advances in the development of HCL systems. These systems improve glycaemic outcomes and reduce the burden of treatment for people with type 1 diabetes (pwT1D). It is anticipated that access to these systems will increase in England as a result of updates in National Institute of Health and Care Excellence (NICE) guidance providing broader support for the use of real-time continuous glucose monitoring (CGM) for pwT1D. NICE are currently undertaking multiple-technology appraisal into HCL systems. Based on experience from centres involved in supporting advanced technologies as well as from the recent NHS HCL pilot, this guide is intended to provide healthcare professionals (HCPs) with UK expert consensus on the best practice for initiation, optimization and ongoing management of HCL therapy. [Abstract copyright: This article is protected by copyright. All rights reserved.
    • …
    corecore