1,739 research outputs found

    A blessing in disguise?! Discretion in the context of EU decision-making, national transposition and legitimacy regarding EU directives

    Get PDF
    This dissertation looks into the role of discretion granted by EU directives in EU legislative decision-making and national transposition processes. It applies a qualitative single country-study, focusing on the transposition of six directives in the Netherlands, from the policy areas of consumer protection, environment and justice and home affairs (migration). In the theoretical part the concept of discretion is explored, using insights from both the legal and political sciences. The empirical analysis then presents both EU and national processes regarding the six directives, addressed individually as well as in a comparative manner. This study contributes to clarifying the reasons and circumstances regarding the granting of different margins of discretion to Member States and the effects of discretion on EU negotiations and national transposition. It confirms that discretion can have facilitating and impeding effects on transposition, explains why, and identifies other factors affecting transposition by interacting with discretion. Additionally, a more fine-grained approach to measuring discretion is proposed than hitherto. Finally, but addressed separately from the empirical analysis, the link between discretion and legitimacy is elaborated. It is argued that discretion in national transposition processes can be used to enhance the directives’ input, throughput and output legitimacy within national law

    It’s not all about the money—landowner motivation and high voltage grid development

    Get PDF
    The transition to a renewable energy future requires the extensive expansion of current high voltage grids. Due to the amount of land needed for expansion, issues related to land use have led to increased grid development opposition among landowners which in turn leads to significant project planning and budget overruns. Yet knowledge about why landowners support or object to high voltage grid development is limited. In this study, we use a theory on pluralism to uncover and categorize the multiplicity of motivations of 200 individual landowners in the Netherlands. Our results indicate that only a small number of landowners who oppose grid development focus on individual monetary gain through compensation for limits on their land use. Furthermore, most landowners find the fair and equal distribution of both the advantages and disadvantages of such limits more important than individual financial compensation. As such, overcoming contentious land use issues related to high voltage grid development by way of high individual financial compensation isn’t the only solution. Highlights: Land use conflicts affect expansions of high voltage grids crucial for meeting CO2 objectives Motivations of landowners are unevenly divided among different rationalities Most individual landowners do support high voltage grid developments Individual financial compensation isn’t the only solution

    Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy

    Get PDF
    We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic effective interactions between surface metal atoms allow for the description of, e.g., the sublimation of CdTe(001), including the reconstruction of Cd-terminated surfaces and its dependence on the substrate temperature T. Our model also includes Te-dimerization and the potential presence of excess Te in a reservoir of weakly bound atoms at the surface. We study the self-regulation of atomic layer epitaxy (ALE) and demonstrate how the interplay of the reservoir occupation with the surface kinetics results in two different regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle, whereas at low enough T each cycle adds a complete layer of CdTe. The transition between the two regimes occurs at a characteristic temperature and its dependence on external parameters is studied. Comparing the temperature dependence of the ALE growth rate in our model with experimental results for CdTe we find qualitative agreement.Comment: 9 pages (REVTeX), 8 figures (EPS). Content revised, references added, typos correcte

    Infinitesimal incommensurate stripe phase in an axial next-nearest-neighbor Ising model in two dimensions

    Full text link
    An axial next-nearest-neighbor Ising (ANNNI) model is studied by using the non-equilibrium relaxation method. We find that the incommensurate stripe phase between the ordered phase and the paramagnetic phase is negligibly narrow or may vanish in the thermodynamic limit. The phase transition is the second-order transition if approached from the ordered phase, and it is of the Kosterlitz-Thouless type if approached from the paramagnetic phase. Both transition temperatures coincide with each other within the numerical errors. The incommensurate phase which has been observed previously is a paramagnetic phase with a very long correlation length (typically ξ500\xi\ge 500). We could resolve this phase by treating very large systems (6400×6400\sim 6400\times 6400), which is first made possible by employing the present method.Comment: 12 pages, 10 figures. To appear in Phys.Rev.

    Cyclotron effective masses in layered metals

    Get PDF
    Many layered metals such as quasi-two-dimensional organic molecular crystals show properties consistent with a Fermi liquid description at low temperatures. The effective masses extracted from the temperature dependence of the magnetic oscillations observed in these materials are in the range, m^*_c/m_e \sim 1-7, suggesting that these systems are strongly correlated. However, the ratio m^*_c/m_e contains both the renormalization due to the electron-electron interaction and the periodic potential of the lattice. We show that for any quasi-two-dimensional band structure, the cyclotron mass is proportional to the density of states at the Fermi energy. Due to Luttinger's theorem, this result is also valid in the presence of interactions. We then evaluate m_c for several model band structures for the \beta, \kappa, and \theta families of (BEDT-TTF)_2X, where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene) and X is an anion. We find that for \kappa-(BEDT-TTF)_2X, the cyclotron mass of the \beta-orbit, m^{*\beta}_c, is close to 2 m^{*\alpha}_c, where m^{*\alpha}_c is the effective mass of the \alpha- orbit. This result is fairly insensitive to the band structure details. For a wide range of materials we compare values of the cyclotron mass deduced from band structure calculations to values deduced from measurements of magnetic oscillations and the specific heat coefficient.Comment: 12 pages, 3 eps figure

    Triplet superconductivity in a one-dimensional ferromagnetic t-J model

    Full text link
    In this paper we study the ground state phase diagram of a one-dimensional tUJt-U-J model, at half-filling. In the large-bandwidth limit and for ferromagnetic exchange with easy-plane anisotropy, a phase with gapless charge and massive spin excitations, characterized by the coexistence of triplet superconducting (TSTS) and spin density wave (SDWzSDW^{z}) instabilities is realized in the ground state. With reduction of the bandwidth, a transition into an insulating phase showing properties of the spin-1/2 XY model takes place. In the case of weakly anisotropic antiferromagnetic exchange the system shows a long range dimerized (Peierls) ordering in the ground state. The complete weak-coupling phase diagram of the model, including effects of the on-site Hubbard interaction, is obtained

    ON COMPUTER SIMULATION AS A COMPONENT IN INFORMATION SYSTEMS RESEARCH

    Get PDF
    Computer simulation is widely regarded as a useful activity during various phases of research. However, depending on its context, the meaning, definition, and focus of the term can vary: In traffic planning, for example, simulation is used to determine useful configurations of a road network, thus focusing on the environment. An entirely different perspective is used within multi-agent systems. In such settings, the environment of the agents remains static, while the interesting research questions concern the behavior of the agents themselves. The research focuses on the microscopic level and the resulting emergent behavior. This article puts such diverse meanings in the context of a research process that treats descriptive and prescriptive research as two sides of the same coin. We develop a framework to classify different types of simulation, based on the actual research activity they are intended to be used for. Two case studies supplement the framework

    Conductance as a Function of the Temperature in the Double Exchange Model

    Full text link
    We have used the Kubo formula to calculate the temperature dependence of the electrical conductance of the double exchange Hamiltonian. We average the conductance over an statistical ensemble of clusters, which are obtained by performing Monte Carlo simulations on the classical spin orientation of the double exchange Hamiltonian. We find that for electron concentrations bigger than 0.1, the system is metallic at all temperatures. In particular it is not observed any change in the temperature dependence of the resistivity near the magnetical critical temperature. The calculated resistivity near TcT_c is around ten times smaller than the experimental value. We conclude that the double exchange model is not able to explain the metal to insulator transition which experimentally occurs at temperatures near the magnetic critical temperature.Comment: 6 pages, 5 figures included in the tex
    corecore