34,441 research outputs found
Comment on "Evidence for nontrivial ground-state structure of 3d +/- J spin glasses"
In a recent Letter [Europhys. Lett. 40, 429 (1997)], Hartmann presented
results for the structure of the degenerate ground states of the
three-dimensional +/- J spin glass model obtained using a genetic algorithm. In
this Comment, I argue that the method does not produce the correct
thermodynamic distribution of ground states and therefore gives erroneous
results for the overlap distribution. I present results of simulated annealing
calculations using different annealing rates for cubic lattices with
N=4*4*4spins. The disorder-averaged overlap distribution exhibits a significant
dependence on the annealing rate, even when the energy has converged. For fast
annealing, moments of the distribution are similar to those presented by
Hartmann. However, as the annealing rate is lowered, they approach the results
previously obtained using a multi-canonical Monte Carlo method. This shows
explicitly that care must be taken not only to reach states with the lowest
energy but also to ensure that they obey the correct thermodynamic
distribution, i.e., that the probability is the same for reaching any of the
ground states.Comment: 2 pages, Revtex, 1 PostScript figur
Investigations of Martian history
Geologic and stratigraphic analyses of Martian channels were accomplished using Mariner frames of high resolution. Crater counts were made to determine which forms had the least relative age. Results indicate that major channel and chaotic systems were relatively young, and that Mars experienced periods of enhanced erosive activity during a period of early dense atmospheric activity with rain. The problem of absolute age determination is discussed and geomorphological studies of selected Local Martian Regions are presented
Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum
The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity
Martian Cratering 4: Mariner 9 Initial Analysis of Cratering Chronology
Early analyses of cratering and other Martian surface properties that indicated extensive ancient erosion have been strongly supported by Mariner 9 data. By their great variations in density, these craters indicate a history of Martian erosion and crustal development intermediate between earth and the moon
A BeppoSAX observation of the supersoft source 1E 0035.4-7230
Results from a 37,000 s BeppoSAX Low-Energy Concentrator Spectrometer (LECS)
observation of the supersoft source SMC 13 (=1E 0035.4-7230) in the Small
Magellanic Cloud are reported. The BeppoSAX spectrum is fitted either with a
blackbody spectrum with an effective temperature kT = 26-58 eV, an LTE white
dwarf atmosphere spectrum with kT = 35-50 eV, or a non-LTE white dwarf
atmosphere spectrum with kT = 25-32 eV. The bolometric luminosity is < 8 10^37
erg s-1 and < 3 10^37 erg s^-1 for the LTE and the non-LTE spectrum. We also
applied a spectral fit to combined spectra obtained with BeppoSAX LECS and with
ROSAT PSPC. The kT derived for the non-LTE spectrum is 27-29 eV, the bolometric
luminosity is 1.1-1.2 10^37 erg s^-1. We can exclude any spectrally hard
component with a luminosity > 2 10^35 erg s^-1 (for a bremmstrahlung with a
temperature of 0.5 keV) at a distance of 60 kpc. The LTE temperature is
therefore in the range 5.5+/-0.2 10^5 K and the non-LTE temperature in the
range 3.25+/-0.16 10^5 K. Assuming the source is on the stability line for
atmospheric nuclear burning, we constrain the white dwarf mass from the LTE and
the non-LTE fit to ~1.1 M-solar and ~0.9 M-solar respectively. However, the
temperature and luminosity derived with the non-LTE model for 1E 0035.4-7230 is
consistent with a lower mass M~0.6-0.7 M-solar white dwarf as predicted by Sion
and Starrfield (1994). At the moment, neither of these two alternatives for the
white dwarf mass can be excluded.Comment: 6 pages, accepted by A&A March 30th 199
Search for GRB afterglows in the ROSAT all-sky survey
We report on the status of our search for X-ray afterglows of gamma-ray
bursts (GRBs) using the ROSAT all-sky survey data. The number of potential
X-ray afterglow candidates with respect to the expected number of beamed GRBs
allows to constrain the relative beaming angles of GRB emission and afterglow
emission at about 1-5 hrs after the GRB.Comment: 3 pages A&A style, 1 color ps-figure; To appear in A&A Suppl. Series,
Proc. of Rome 1998 GRB workshop, also available from
http://www.aip.de/~jcg/publis.htm
Supercharged topping rocket propellant feed system
A rocket propellant feed system utilizing a bleed turbopump to supercharge a topping turbopump is presented. The bleed turbopump is of a low pressure type to meet the cavitation requirements imposed by the propellant storage tanks. The topping turbopump is of a high pressure type and develops 60 to 70 percent of the pressure rise in the propellant
Recommended from our members
Synthesis and reactivity of a nickel(ii) thioperoxide complex: demonstration of sulfide-mediated N2O reduction.
The thiohyponitrite ([SNNO]2-) complex, [K(18-crown-6)][L tBuNiII(κ2-SNNO)] (L tBu = {(2,6-iPr2C6H3)NC( t Bu)}2CH), extrudes N2 under mild heating to yield [K(18-crown-6)][L tBuNiII(η2-SO)] (1), along with minor products [K(18-crown-6)][L tBuNiII(η2-OSSO)] (2) and [K(18-crown-6)][L tBuNiII(η2-S2)] (3). Subsequent reaction of 1 with carbon monoxide (CO) results in the formation of [K(18-crown-6)][L tBuNiII(η2-SCO)] (4), [K(18-crown-6)][L tBuNiII(S,O:κ2-SCO2)] (5), [K(18-crown-6)][L tBuNiII(κ2-CO3)] (6), carbonyl sulfide (COS) (7), and [K(18-crown-6)][L tBuNiII(S2CO)] (8). To rationalize the formation of these products we propose that 1 first reacts with CO to form [K(18-crown-6)][L tBuNiII(S)] (I) and CO2, via O-atom abstraction. Subsequently, complex I reacts with CO or CO2 to form 4 and 5, respectively. Similarly, the formation of complex 6 and COS can be rationalized by the reaction of 1 with CO2 to form a putative Ni(ii) monothiopercarbonate, [K(18-crown-6)][L tBuNiII(κ2-SOCO2)] (11). The Ni(ii) monothiopercarbonate subsequently transfers a S-atom to CO to form COS and [K(18-crown-6)][L tBuNiII(κ2-CO3)] (6). Finally, the formation of 8 can be rationalized by the reaction of COS with I. Critically, the observation of complexes 4 and 5 in the reaction mixture reveals the stepwise conversion of [K(18-crown-6)][L tBuNiII(κ2-SNNO)] to 1 and then I, which represents the formal reduction of N2O by CO
- …
