182 research outputs found

    Isolation of 10 cyclosporine metabolites from human bile

    Get PDF
    Ten metabolites of cyclosporine were isolated from the ethyl ether extract of bile from four liver transplant patients receiving cyclosporine. Two of the metabolites were unique and previously unidentified. Liquid-liquid partitioning into diethyl ether with subsequent defatting with n-hexane was used for the initial extraction form bile. Separation of the individual metabolites (A-J) was performed using a Sephadex LH-20 column and a gradient high performance liquid chromatographic method. The molecular weights of the isolated metabolites were determined by fast atom bombardment/mass spectrometry. Gas chromatography with mass spectrometic amino acid analysis was also used to identify the amino acid composition and the hydroxylation position of metabolites A, B, C, D, and G. Proton nuclear magnetic resonance spectra were utilized to disinguish the chemical shifts of N-CH3 singlets and NH doublets of metabolites A, B, C, and D. Metabolites A, E, F, H, I, and J were reported previously in human urine and animal bile. Metabolites C and D are dihydroxylated compounds which cannot be clearly described as previously isolated compounds. Metabolites B and G are novel metabolites with a mass fragment which corresponded to a loss of 131 Da from the protonated molecular ion (MH+) in the fast atom bombardment/mass spectrometry, suggesting that the double bond in amino acid 1 has been modified. Metabolites B and G were primarily isolated from the bile of one of the liver transplant patients which contained abnormally high concentrations of these two metabolites. The method described is an efficient procedure for isolating milligram quantities of the major metabolites with greater than 95% purity

    A Functional Gene Array for Detection of Bacterial Virulence Elements

    Get PDF
    Emerging known and unknown pathogens create profound threats to public health. Platforms for rapid detection and characterization of microbial agents are critically needed to prevent and respond to disease outbreaks. Available detection technologies cannot provide broad functional information about known or novel organisms. As a step toward developing such a system, we have produced and tested a series of high-density functional gene arrays to detect elements of virulence and antibiotic resistance mechanisms. Our first generation array targets genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for gene family detection and discrimination. When tested with organisms at varying phylogenetic distances from the four target strains, the array detected orthologs for the majority of targeted gene families present in bacteria belonging to the same taxonomic family. In combination with whole-genome amplification, the array detects femtogram concentrations of purified DNA, either spiked in to an aerosol sample background, or in combinations from one or more of the four target organisms. This is the first report of a high density NimbleGen microarray system targeting microbial antibiotic resistance and virulence mechanisms. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples

    The Immunological Synapse: a Dynamic Platform for Local Signaling

    Get PDF
    The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca 2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication

    Acromegaly caused by growth hormone-releasing hormone-producing tumors: long-term observational studies in three patients

    Get PDF
    We report on three newly diagnosed patients with extracranial ectopic GHRH-associated acromegaly with long-term follow-up after surgery of the primary tumor. One patient with a pancreatic tumor and two parathyroid adenomas was the index case of a large kindred of MEN-I syndrome. The other two patients had a large bronchial carcinoid. The first patient is still in remission now almost 22 years after surgery. In the two other patients GHRH did not normalize completely after surgery and they are now treated with slow-release octreotide. IGF-I normalized in all patients. During medical treatment basal GH secretion remained (slightly) elevated and secretory regularity was decreased in 24 h blood sampling studies. We did not observe development of tachyphylaxis towards the drug or radiological evidence of (growing) metastases. We propose life-long suppressive therapy with somatostatin analogs in cases with persisting elevated serum GHRH concentrations after removal of the primary tumor. Independent parameters of residual disease are elevated basal (nonpulsatile) GH secretion and decreased GH secretory regularity

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    Vegan diets : practical advice for athletes and exercisers.

    Get PDF
    With the growth of social media as a platform to share information, veganism is becoming more visible, and could be becoming more accepted in sports and in the health and fitness industry. However, to date, there appears to be a lack of literature that discusses how to manage vegan diets for athletic purposes. This article attempted to review literature in order to provide recommendations for how to construct a vegan diet for athletes and exercisers. While little data could be found in the sports nutrition literature specifically, it was revealed elsewhere that veganism creates challenges that need to be accounted for when designing a nutritious diet. This included the sufficiency of energy and protein; the adequacy of vitamin B12, iron, zinc, calcium, iodine and vitamin D; and the lack of the long-chain n-3 fatty acids EPA and DHA in most plant-based sources. However, via the strategic management of food and appropriate supplementation, it is the contention of this article that a nutritive vegan diet can be designed to achieve the dietary needs of most athletes satisfactorily. Further, it was suggested here that creatine and β-alanine supplementation might be of particular use to vegan athletes, owing to vegetarian diets promoting lower muscle creatine and lower muscle carnosine levels in consumers. Empirical research is needed to examine the effects of vegan diets in athletic populations however, especially if this movement grows in popularity, to ensure that the health and performance of athletic vegans is optimised in accordance with developments in sports nutrition knowledge

    Marine Cyanobacteria Compounds with Anticancer Properties: Implication of Apoptosis

    Get PDF
    Marine cyanobacteria have been proved to be an important source of potential anticancer drugs. Although several compounds were found to be cytotoxic to cancer cells in culture, the pathways by which cells are affected are still poorly elucidated. For some compounds, cancer cell death was attributed to an implication of apoptosis through morphological apoptotic features, implication of caspases and proteins of the Bcl-2 family, and other mechanisms such as interference with microtubules dynamics, cell cycle arrest and inhibition of proteases other than caspases
    corecore