11,426 research outputs found
Cosmic ray positron and negatron spectra between 20 and 800 MeV measured in 1974
A balloon-borne spark chamber magnetic spectrometer was used to measure separate spectra of positrons and negatrons in two flights during summer, 1974. The total electron flux is about 0.3 m(-2) s(-1) sr(-1) MeV(-1) between 70 and 800 MeV, and increases toward lower energies. The positron spectrum decreases sharply toward lower energies from a value of about 0.08 m(-2) s(-1) sr(-1) MeV(-1) at 650 MeV, and only upper limits are obtained for positrons below 200 MeV. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation provides reasonable fits to both the positron and total electron data. At energies below 180 MeV the data are consistent with a continuation of the same diffusion coefficient and local source of negatrons, or a change in the diffusion coefficient to a constant value
Conceptual mechanization studies for a horizon definition spacecraft communications and data handling subsystem
Conceptual mechanization for horizon definition spacecraft communications and data handling subsyste
Orbit and attitude determination results during launch support operations for SBS-5
Presented are orbit and attitude determination results from the launch of Satellite Business Systems (SBS)-5 satellite on September 8, 1988 by Arianespace. SBS-5 is a (HS-376) spin stabilized spacecraft. The launch vehicle injected the spacecraft into a low inclination transfer orbit. Apogee motor firing (AMF) attitude was achieved with trim maneuvers. An apogee kick motor placed the spacecraft into drift orbit. Postburn, reorientation and spindown maneuvers were performed during the next 25 hours. The spacecraft was on-station 19 days later. The orbit and attitude were determined by both an extended Kalman filter and a weighted least squares batch processor. Although the orbit inclination was low and the launch was near equinox, post-AMF analysis indicated an attitude declination error of 0.034 deg., resulting in a saving of 8.5 pounds of fuel. The AMF velocity error was 0.4 percent below nominal. The post-AMF drift rate was determined with the filter only 2.5 hours after motor firing. The filter was used to monitor and retarget the reorientation to orbit normal in real time
EGRET Gamma-Ray Blazars: Luminosity Function and Contribution to the Extragalactic Gamma-Ray Background
We describe the properties of the blazars detected by EGRET and summarize the
results on the calculations of the evolution and luminosity function of these
sources.
Of the large number of possible origins of extragalactic diffuse gamma-ray
emission, it has been postulated that active galaxies might be one of the most
likely candidates. However, some of our recent analyses indicate that only 25
percent of the diffuse extragalactic emission measured by SAS-2 and EGRET can
be attributed to unresolved gamma-ray blazars.
Therefore, other sources of diffuse extragalactic gamma-ray emission must
exist.
We present a summary of these results in this article.Comment: 4 pages, accepted for publication in Astroparticle Physic
Reflection high-energy electron diffraction analysis of polycrystalline films with grain size and orientation distributions
We report a computationally efficient algorithm to calculate reflection high-energy electron diffraction (RHEED) intensities from well-textured, small-grained polycrystalline films in the kinematic limit. We also show how the intensity maps of the spots in a RHEED pattern from such a film can be quantitatively analyzed to determine the film's average grain size, as well as its in-plane orientation and texture distributions. We find that the in-plane orientation and texture distribution widths of these films can be determined to within 1 degree and that the average lateral grain size can be measured to within a fraction of a nanometer after suitable calibration of our technique
Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells
Major effort during this reporting period was devoted to two tasks: improvement of the electrical measurement instrumentation through the design and construction of a microcomputer controlled short interval tester, and better understanding of second quadrant behavior by developing a mathematical model relating cell temperature to electrical characteristics. In addition, some preliminary work is reported on an investigation into color changes observed after stressing
Development of TPS flight test and operational instrumentation
Thermal and flow sensor instrumentation was developed for use as an integral part of the space shuttle orbiter reusable thermal protection system. The effort was performed in three tasks: a study to determine the optimum instruments and instrument installations for the space shuttle orbiter RSI and RCC TPS; tests and/or analysis to determine the instrument installations to minimize measurement errors; and analysis using data from the test program for comparison to analytical methods. A detailed review of existing state of the art instrumentation in industry was performed to determine the baseline for the departure of the research effort. From this information, detailed criteria for thermal protection system instrumentation were developed
Evaluation of performance impairment by spacecraft contaminants
The environmental contaminants (isolated as off-gases in Skylab and Apollo missions) were evaluated. Specifically, six contaminants were evaluated for their effects on the behavior of juvenile baboons. The concentrations of contaminants were determined through preliminary range-finding studies with laboratory rats. The contaminants evaluated were acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), trichloroethylene (TCE), heptane and Freon 21. When the studies of the individual gases were completed, the baboons were also exposed to a mixture of MEK and TCE. The data obtained revealed alterations in the behavior of baboons exposed to relatively low levels of the contaminants. These findings were presented at the First International Symposium on Voluntary Inhalation of Industrial Solvents in Mexico City, June 21-24, 1976. A preprint of the proceedings is included
Deterministic ratchet from stationary light fields
Ratchets are dynamic systems where particle transport is induced by
zero-average forces due to the interplay between nonlinearity and asymmetry.
Generally, they rely on the effect of a strong external driving. We show that
stationary optical lattices can be designed to generate particle flow in one
direction while requiring neither noise nor driving. Such optical fields must
be arranged to yield a combination of conservative (dipole) and nonconservative
(radiation pressure) forces. Under strong friction all paths converge to a
discrete set of limit periodic trajectories flowing in the same direction.Comment: 6 pages, 4 figure
- …