8,808 research outputs found

    Microscale application of column theory for high resolution force and displacement sensing

    Full text link
    We present the design, fabrication and experimental validation of a novel device that exploits the amplification of displacement and attenuation of structural stiffness in the post-buckling deformation of slender columns to obtain pico-Newton force and nanometer displacement resolution even under an optical microscope. The extremely small size, purely mechanical sensing scheme and vacuum compatibility of the instrument makes it compatible with existing visualization tools of nanotechnology. The instrument has a wide variety of potential applications ranging from electro-mechanical characterization of one dimensional solids to single biological cells

    Isochronal synchronization of delay-coupled systems

    Full text link
    We consider small network models for mutually delay-coupled systems which typically do not exhibit stable isochronally synchronized solutions. We show that for certain coupling architectures which involve delayed self feedback to the nodes, the oscillators become isochronally synchronized. Applications are shown for both incoherent pump coupled lasers and spatio-temporal coupled fiber ring lasers.Comment: 5 pages, accepted for publication in Physical Review

    Modelling the dynamics of turbulent floods

    Get PDF
    Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows

    Complete chaotic synchronization in mutually coupled time-delay systems

    Full text link
    Complete chaotic synchronization of end lasers has been observed in a line of mutually coupled, time-delayed system of three lasers, with no direct communication between the end lasers. The present paper uses ideas from generalized synchronization to explain the complete synchronization in the presence of long coupling delays, applied to a model of mutually coupled semiconductor lasers in a line. These ideas significantly simplify the analysis by casting the stability in terms of the local dynamics of each laser. The variational equations near the synchronization manifold are analyzed, and used to derive the synchronization condition that is a function of the parameters. The results explain and predict the dependence of synchronization on various parameters, such as time-delays, strength of coupling and dissipation. The ideas can be applied to understand complete synchronization in other chaotic systems with coupling delays and no direct communication between synchronized sub-systems.Comment: 22 pages, 6 figure

    On the Rotation Period of (90377) Sedna

    Full text link
    We present precise, ~1%, r-band relative photometry of the unusual solar system object (90377) Sedna. Our data consist of 143 data points taken over eight nights in October 2004 and January 2005. The RMS variability over the longest contiguous stretch of five nights of data spanning nine days is only 1.3%. This subset of data alone constrain the amplitude of any long-period variations with period P to be A<1% (P/20 days)^2. Over the course of any given 5-hour segment, the data exhibits significant linear trends not seen in a comparison star of similar magnitude, and in a few cases these segments show clear evidence for curvature at the level of a few millimagnitudes per hour^2. These properties imply that the rotation period of Sedna is O(10 hours), cannot be 10 days, unless the intrinsic light curve has significant and comparable power on multiple timescales, which is unlikely. A sinusoidal fit yields a period of P=(10.273 +/- 0.002) hours and semi-amplitude of A=(1.1 +/- 0.1)%. There are additional acceptable fits with flanking periods separated by ~3 minutes, as well as another class of fits with P ~ 18 hours, although these later fits appear less viable based on visual inspection. Our results indicate that the period of Sedna is likely consistent with typical rotation periods of solar system objects, thus obviating the need for a massive companion to slow its rotation.Comment: 7 pages, 4 figures, 2.5 tables. Final ApJL version, minor changes. Full light curve data in tex

    Deep MMT Transit Survey of the Open Cluster M37 IV: Limit on the Fraction of Stars With Planets as Small as 0.3 R_J

    Full text link
    We present the results of a deep (15 ~< r ~< 23), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m MMT. We do not detect any transiting planets among the ~1450 observed cluster members. We do, however, identify a ~ 1 R_J candidate planet transiting a ~ 0.8 Msun Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag) and has an expected velocity semi-amplitude of K ~ 220 m/s (M/M_J). We conduct Monte Carlo transit injection and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution in orbital period, we find that < 1.1%, < 2.7% and < 8.3% of cluster members have 1.0 R_J planets within Extremely Hot Jupiter (EHJ, 0.4 < T < 1.0 day), Very Hot Jupiter (VHJ, 1.0 < T < 3.0 days) and Hot Jupiter (HJ, 3.0 < T < 5.0 days) period ranges respectively. For 0.5 R_J planets the limits are < 3.2%, and < 21% for EHJ and VHJ period ranges, while for 0.35 R_J planets we can only place an upper limit of < 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of FGKM dwarfs, we place 95% upper limits of < 0.3%, < 0.8% and < 2.7% on the fraction of stars with 1.0 R_J EHJ, VHJ and HJ assuming the candidate planet is not genuine. If the candidate is genuine, the frequency of ~ 1.0 R_J planets in the EHJ period range is 0.002% < f_EHJ < 0.5% with 95% confidence. We place limits of < 1.4%, < 8.8% and < 47% for 0.5 R_J planets, and a limit of < 16% on 0.3 R_J planets in the EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.Comment: 61 pages, 19 figures, 5 tables, replaced with the version accepted for publication in Ap
    • …
    corecore