165 research outputs found

    Review of \u3ci\u3eCat Tale\u3c/i\u3e by Michael Hall

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1090/thumbnail.jp

    Review of \u3ci\u3eArchie\u3c/i\u3e by Domenica More Gordon

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1089/thumbnail.jp

    Review of \u3ci\u3eThis Moose Belongs to Me\u3c/i\u3e by Oliver Jeffers

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1094/thumbnail.jp

    Review of \u3ci\u3eDog in Charge\u3c/i\u3e by K.L. Going

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1091/thumbnail.jp

    Review of \u3ci\u3eIf You Want to See a Whale\u3c/i\u3e by Julie Fogliano

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1092/thumbnail.jp

    Review of \u3ci\u3eWhat\u27s the Time, Mr. Wolf?\u3c/i\u3e by Debi Gliori

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1096/thumbnail.jp

    Review of \u3ci\u3eTiger In My Soup\u3c/i\u3e by Kashmira Sheth

    Get PDF
    https://digitalcommons.cedarville.edu/intern_book_reviews/1095/thumbnail.jp

    Increased Reactive Oxygen Species and Cell Cycle Defects Contribute to Anemia in the RASA3 Mutant Mouse Model s

    Get PDF
    RASA3 is a Ras GTPase activating protein that plays a critical role in blood formation. The autosomal recessive mouse model scat (severe combined anemia and thrombocytopenia) carries a missense mutation in Rasa3. Homozygotes present with a phenotype characteristic of bone marrow failure that is accompanied by alternating episodes of crisis and remission. The mechanism leading to impaired erythropoiesis and peripheral cell destruction as evidenced by membrane fragmentation in scat is unclear, although we previously reported that the mislocalization of RASA3 to the cytosol of reticulocytes and mature red cells plays a role in the disease. In this study, we further characterized the bone marrow failure in scat and found that RASA3 plays a central role in cell cycle progression and maintenance of reactive oxygen species (ROS) levels during terminal erythroid differentiation, without inducing apoptosis of the precursors. In scat mice undergoing crises, there is a consistent pattern of an increased proportion of cells in the G0/G1 phase at the basophilic and polychromatophilic stages of erythroid differentiation, suggesting that RASA3 is involved in the G1 checkpoint. However, this increase in G1 is transient, and either resolves or becomes indiscernible by the orthochromatic stage. In addition, while ROS levels are normal early in erythropoiesis, there is accumulation of superoxide levels at the reticulocyte stage (DHE increased 40% in scat; p = 0.02) even though mitochondria, a potential source for ROS, are eliminated normally. Surprisingly, apoptosis is significantly decreased in the scat bone marrow at the proerythroblastic (15.3%; p = 0.004), polychromatophilic (8.5%; p = 0.01), and orthochromatic (4.2%; p = 0.02) stages. Together, these data indicate that ROS accumulation at the reticulocyte stage, without apoptosis, contributes to the membrane fragmentation observed in scat. Finally, the cell cycle defect and increased levels of ROS suggest that scat is a model of bone marrow failure with characteristics of aplastic anemia

    Differential effects of RASA3 mutations on hematopoiesis are profoundly influenced by genetic background and molecular variant.

    Get PDF
    Studies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5-13.5 due to severe hemorrhage. Here, conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-iCre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in two mouse models, scat (G125V) and hlb381 (H794L), show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. The mutation effect is mediated at least in part by differential effects on RAS and RAP activation. In addition, we show that the role of RASA3 is conserved during human terminal erythropoiesis, highlighting a potential function for the RASA3-RAS axis in disordered erythropoiesis in humans. Finally, global transcriptomic studies in scat suggest potential targets to ameliorate disease progression

    Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis.

    Get PDF
    Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo
    • …
    corecore