33 research outputs found

    A passive sampling method for radiocarbon analysis of atmospheric CO<sub>2</sub> using molecular sieve

    Get PDF
    Radiocarbon (14C) analysis of atmospheric CO2 can provide information on CO2 sources and is potentially valuable for validating inventories of fossil fuel-derived CO2 emissions to the atmosphere. We tested zeolite molecular sieve cartridges, in both field and laboratory experiments, for passively collecting atmospheric CO2. Cartridges were exposed to the free atmosphere in two configurations which controlled CO2 trapping rate, allowing collection of sufficient CO2 in between 1.5 and 10 months at current levels. 14C results for passive samples were within measurement uncertainty of samples collected using a pump-based system, showing that the method collected samples with 14C contents representative of the atmosphere. δ13C analysis confirmed that the cartridges collected representative CO2 samples, however, fractionation during passive trapping means that δ13C values need to be adjusted by an amount which we have quantified. Trapping rate was proportional to atmospheric CO2 concentration, and was not affected by exposure time unless this exceeded a threshold. Passive sampling using molecular sieve cartridges provides an easy and reliable method to collect atmospheric CO2 for 14C analysis

    Soil C, N and P cycling enzyme responses to nutrient limitation under elevated CO2

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: Data will be available from the Environmental Information Data Centre, https://eidc.ac.uk/Elevated CO2 (eCO2) can stimulate plant productivity and increase carbon (C) input to soils, but nutrient limitation restricts productivity. Despite phosphorus (P)-limited ecosystems increasing globally, it is unknown how nutrient cycling, particularly soil microbial extra cellular enzyme activity (EEA), will respond to eCO2 in such ecosystems. Long-term nutrient manipulation plots from adjacent P-limited acidic and limestone grasslands were exposed to eCO2 (600 ppm) provided by a mini-Free Air CO2 Enrichment system. P-limitation was alleviated (35 kg-P ha−1 y−1 (P35)), exacerbated (35 kg-N ha−1 y−1 (N35), 140 kg-N ha−1 y−1 (N140)), or maintained (control (P0N0)) for > 20 years. We measured EEAs of C-, N- and P-cycling enzymes (1,4-β-glucosidase, cellobiohydrolase, N-acetyl β-D-glucosaminidase, leucine aminopeptidase, and acid phosphatase) and compared C:N:P cycling enzyme ratios using a vector analysis. Potential acid phosphatase activity doubled under N additions relative to P0N0 and P35 treatments. Vector analysis revealed reduced C-cycling investment and increased P-cycling investment under eCO2. Vector angle significantly increased with P-limitation (P35 < P0N0 < N35 < N140) indicating relatively greater investment in P-cycling enzymes. The limestone grassland was more C limited than the acidic grassland, characterised by increased vector length, C:N and C:P enzyme ratios. The absence of interactions between grassland type and eCO2 or nutrient treatment for all enzyme indicators signaled consistent responses to changing P-limitation and eCO2 in both grasslands. Our findings suggest that eCO2 reduces C limitation, allowing increased investment in P- and N-cycle enzymes with implications for rates of nutrient cycling, potentially alleviating nutrient limitation of ecosystem productivity under eCO2.Natural Environment Research Council (NERC

    Elevated CO2 interacts with nutrient inputs to restructure plant communities in phosphorus-limited grasslands

    Get PDF
    Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m−2 year−1) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m−2 year−1) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2, N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2–nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P

    Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon

    Get PDF
    Purpose The tropical phosphorus cycle and its relation to soil phosphorus (P) availability are a major uncertainty in projections of forest productivity. In highly weathered soils with low P concentrations, plant and microbial communities depend on abiotic and biotic processes to acquire P. We explored the seasonality and relative importance of drivers controlling the fluctuation of common P pools via processes such as litter production and decomposition, and soil phosphatase activity. Methods We analyzed intra-annual variation of tropical soil phosphorus pools using a modified Hedley sequential fractionation scheme. In addition, we measured litterfall, the mobilization of P from litter and soil extracellular phosphatase enzyme activity and tested their relation to fluctuations in P- fractions. Results Our results showed clear patterns of seasonal variability of soil P fractions during the year. We found that modeled P released during litter decomposition was positively related to change in organic P fractions, while net change in organic P fractions was negatively related to phosphatase activities in the top 5 cm. Conclusion We conclude that input of P by litter decomposition and potential soil extracellular phosphatase activity are the two main factors related to seasonal soil P fluctuations, and therefore the P economy in P impoverished soils. Organic soil P followed a clear seasonal pattern, indicating tight cycling of the nutrient, while reinforcing the importance of studying soil P as an integrated dynamic system in a tropical forest context

    Lagging Response of Belowground Functional Traits to Environmental Cues in a Mature Amazonian Tropical Rainforest

    Get PDF
    Context/Purpose: The stress-dominance hypothesis (SDH) is a model of community assembly predicting that the relative importance of environmental filtering increases and competition decreases along a gradient of increasing environmental stress. Therefore, trait variation at the community level should increase as resources are more available. Although the SDH was designed to explain spatial changes in plant communities based on aboveground traits, it is possible that root communities show similar switches in strategies at temporal scales in response to pulses in resource availability. Methods: To test this hypothesis we sampled for two years the morphological changes in root systems in a mature tropical forest in Central Amazon. Thirty-six samples along a 500 m transect were taken each three months from February 2016 to February 2018, separating the uppermost organic layer (0-5 cm) from the mineral soil (5-15 cm). Besides root biomass, we scanned approximately 20% of the total root systems to calculate specific root length (SRL), average diameter (D), root tissue density (RTD), and branching index (BI). Spatially, we expected shifts from acquisitive to conservative syndromes as roots penetrate in the mineral soil. Temporarily, we hypothesized that traits associated with resource acquisition (SRL, SRTA, BI) will increase with soil moisture. Moreover, we expected that trait range will increase as resources become more available. Results: We found significant differences in biomass and morphological traits between the organic and mineral soils. We found no patterns between biomass increases in seasonality, but mean community traits change significantly with seasonal rain patterns. More interestingly, changes in mean and range values were more strongly associated with rain events three months before the collecting date, suggesting a lagging between rain events and belowground community responses. Conclusions: Belowground dynamics are structured spatially and temporarily in tropical forests, in synchrony with the availability of resources, as predicted by the SHD. Our results suggest that species tend to show similar traits during stressful times but diverge during acquisition periods. The results suggest a belowground dimension to niche segregation little explored in tropical biomes to date

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field

    The age of CO2 released from contrasting ecosystems during the arctic winter

    Get PDF
    In arctic ecosystems, winter soil respiration can contribute substantially to annual CO2 release, yet the source of this C is not clear. We analysed the 14C content of C released from plant-free plots in mountain birch forest and tundra-heath. Winter-respired CO2 was found to be a similar age (tundra) or older (forest) than C released during the previous autumn. Overall, our study demonstrates that the decomposition of older C can continue during the winter, in these two contrasting arctic ecosystems

    Soil extracellular enzyme activity under controlled CO2 concentrations, Sheffield

    No full text
    This dataset contains potential activities of soil extra cellular enzyme measured from soil samples from the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment (PLACE). The enzyme activities measured are 1,4-β-glucosidase, cellobiohydrolase, N-acetyl β-D-glucosaminidase, leucine aminopeptidase, and acid phosphatase. Soil samples were collected in Autumn 2018 and analysed in the laboratory at Wageningen University. The experimental design uses 35 cm x 35 cm turf mesocosms from a long term nutrient manipulation experiment. The original experiment is based at Wardlow Hay Cop in the Peak District, UK. Two adjacent P-limited grass lands on a limestone/ calcareous soil and an acidic soil have had nutrient manipulated for &gt; 20 years. In 2018 these mesocosms were exposed to either ambient CO2 (ca. 410 ppm) or 600 ppm.,All data were generated by the authors. Enzyme analyses were conducted in triplicate (technical replication) and activities of unknown samples were calculated in reference to known substrate standards. All calculations were checked for errors prior to acceptance.
    corecore