69 research outputs found

    Speckle interferometry at the Blanco and SOAR telescopes in 2008 and 2009

    Full text link
    The results of speckle interferometric measurements of binary and multiple stars conducted in 2008 and 2009 at the Blanco and SOAR 4-m telescopes in Chile are presented. A total of 1898 measurements of 1189 resolved pairs or sub-systems and 394 observations of 285 un-resolved targets are listed. We resolved for the first time 48 new pairs, 21 of which are new sub-systems in close visual multiple stars. Typical internal measurement precision is 0.3 mas in both coordinates, typical companion detection capability is Δm∼4.2\Delta m \sim 4.2 at 0\farcs15 separation. These data were obtained with a new electron-multiplication CCD camera; data processing is described in detail, including estimation of magnitude difference, observational errors, detection limits, and analysis of artifacts. We comment on some newly discovered pairs and objects of special interest.Comment: Accepted for publication in Astronomical Journal. Tables 4,5,7 will be published electronically, they are available in full from the author

    Speckle interferometry at SOAR in 2015

    Full text link
    The results of speckle interferometric observations at the SOAR telescope in 2015 are given, totalling 1303 measurements of 924 resolved binary and multiple stars and non-resolutions of 260 targets. The separations range from 12 mas to 3.37" (median 0.17"); the maximum measured magnitude difference is 6.7 mag. We resolved 27 pairs for the first time, including 10 as inner or outer subsystems in previously known binaries, e.g. the 50-mas pair in Epsilon Cha. Newly resolved pairs are commented upon. We discuss three apparently non-hierarchical systems discovered in this series, arguing that their unusual configuration results from projection. The resolved quadruple system HIP 71510 is studied as well.Comment: 10 pages, 8 figures. Accepted for publication in AJ. The online tables are not included, available from Tokovinin on request. arXiv admin note: text overlap with arXiv:1506.0571

    Observations of Hierarchical Solar-Type Multiple Star Systems

    Get PDF
    Twenty multiple stellar systems with solar-type primaries were observed at high angular resolution using the PALM-3000 adaptive optics system at the 5 m Hale telescope. The goal was to complement the knowledge of hierarchical multiplicity in the solar neighborhood by confirming recent discoveries by the visible Robo-AO system with new near-infrared observations with PALM-3000. The physical status of most, but not all, of the new pairs is confirmed by photometry in the Ks band and new positional measurements. In addition, we resolved for the first time five close sub-systems: the known astrometric binary in HIP 17129AB, companions to the primaries of HIP 33555, and HIP 118213, and the companions to the secondaries in HIP 25300 and HIP 101430. We place the components on a color-magnitude diagram and discuss each multiple system individually.Comment: Accepted to Astronomical Journa

    Speckle and Spectroscopic Orbits of the Early A-Type Triple System in Virginis

    Get PDF
    Eta Virginis is a bright (V = 3.89) triple system of composite spectral type A2 IV that has been observed for over a dozen years with both spectroscopy and speckle interferometry. Analysis of the speckle observations results in a long period of 13.1 yr. This period is also detected in residuals from the spectroscopic observations of the 71.7919 day short-period orbit. Elements of the long-period orbit were determined separately using the observations of both techniques. The more accurate elements from the speckle solution have been assumed in a simultaneous spectroscopic determination of the short- and long-period orbital elements. The magnitude difference of the speckle components suggests that lines of the third star should be visible in the spectrum

    Know the Star, Know the Planet. III. Discovery of Late-Type Companions to Two Exoplanet Host Stars

    Get PDF
    We discuss two multiple star systems that host known exoplanets: HD 2638 and 30 Ari B. Adaptive optics imagery revealed an additional stellar companion to both stars. We collected multi-epoch images of the systems with Robo-AO and the PALM-3000 adaptive optics systems at Palomar Observatory and provide relative photometry and astrometry. The astrometry indicates that the companions share common proper motion with their respective primaries. Both of the new companions have projected separations less than 30 AU from the exoplanet host star. Using the projected separations to compute orbital periods of the new stellar companions, HD 2638 has a period of 130 yrs and 30 Ari B has a period of 80 years. Previous studies have shown that the true period is most likely within a factor of three of these estimated values. The additional component to the 30 Ari makes it the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the connection between hot Jupiters and binary stars. We place the systems on a color-magnitude diagram and derive masses for the companions which turn out to be roughly 0.5 solar mass stars.Comment: Accepted to Astronomical Journal, 16 pages, 5 Figure

    HR 266=ADS 784: an Early Type Spectroscopic, Speckle Astrometric Multiple System

    Get PDF
    The detection and nature of a \u27speckle astrometric\u27 system are reported with attention given to alternative interpretations of the system components. The HR 226 = ADS 784 system is described as a short-period binary (with a period of 4.241148 +/- 0.000008 d) orbiting an unseen companion (with a period of 1769 +/- 10 d), and the triple\u27s visual orbit is 83.10 +/- 0.20 yr. The elements of the various orbits taken from spectroscopic data are employed to develop the model scenarios. The masses and spectral types of the components are developed and used to calculate the inclinations of the short-, intermediate-, and long-period orbits. The computations show that the inclinations are similar and can be interpreted as three coplanar orbits; however, this conclusion suggests that the unseen companion\u27s absorption features should be detectable. Since the absorption features are not detectable it is concluded that the unseen companion is either a pair of late-type lower-mass stars or one rapidly rotating star
    • …
    corecore