2,273 research outputs found

    Structure of Extreme Correlated Equilibria: a Zero-Sum Example and its Implications

    Get PDF
    We exhibit the rich structure of the set of correlated equilibria by analyzing the simplest of polynomial games: the mixed extension of matching pennies. We show that while the correlated equilibrium set is convex and compact, the structure of its extreme points can be quite complicated. In finite games the ratio of extreme correlated to extreme Nash equilibria can be greater than exponential in the size of the strategy spaces. In polynomial games there can exist extreme correlated equilibria which are not finitely supported; we construct a large family of examples using techniques from ergodic theory. We show that in general the set of correlated equilibrium distributions of a polynomial game cannot be described by conditions on finitely many moments (means, covariances, etc.), in marked contrast to the set of Nash equilibria which is always expressible in terms of finitely many moments

    Single-atom imaging of fermions in a quantum-gas microscope

    Get PDF
    Single-atom-resolved detection in optical lattices using quantum-gas microscopes has enabled a new generation of experiments in the field of quantum simulation. Fluorescence imaging of individual atoms has so far been achieved for bosonic species with optical molasses cooling, whereas detection of fermionic alkaline atoms in optical lattices by this method has proven more challenging. Here we demonstrate single-site- and single-atom-resolved fluorescence imaging of fermionic potassium-40 atoms in a quantum-gas microscope setup using electromagnetically-induced-transparency cooling. We detected on average 1000 fluorescence photons from a single atom within 1.5s, while keeping it close to the vibrational ground state of the optical lattice. Our results will enable the study of strongly correlated fermionic quantum systems in optical lattices with resolution at the single-atom level, and give access to observables such as the local entropy distribution and individual defects in fermionic Mott insulators or anti-ferromagnetically ordered phases.Comment: 7 pages, 5 figures; Nature Physics, published online 13 July 201

    Teosinte Inflorescence Phytolith Assemblages Mirror Zea Taxonomy

    Get PDF
    Molecular DNA analyses of the New World grass (Poaceae) genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis) of maize (Zea mays ssp. mays). However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples

    Moisture transport by Atlantic tropical cyclones onto the North American continent

    Get PDF
    Tropical Cyclones (TCs) are an important source of freshwater for the North American continent. Many studies have tried to estimate this contribution by identifying TC-induced precipitation events, but few have explicitly diagnosed the moisture fluxes across continental boundaries. We design a set of attribution schemes to isolate the column-integrated moisture fluxes that are directly associated with TCs and to quantify the flux onto the North American Continent due to TCs. Averaged over the 2004–2012 hurricane seasons and integrated over the western, southern and eastern coasts of North America, the seven schemes attribute 7 to 18 % (mean 14 %) of total net onshore flux to Atlantic TCs. A reduced contribution of 10 % (range 9 to 11 %) was found for the 1980–2003 period, though only two schemes could be applied to this earlier period. Over the whole 1980–2012 period, a further 8 % (range 6 to 9 % from two schemes) was attributed to East Pacific TCs, resulting in a total TC contribution of 19 % (range 17 to 22 %) to the ocean-to-land moisture transport onto the North American continent between May and November. Analysis of the attribution uncertainties suggests that incorporating details of individual TC size and shape adds limited value to a fixed radius approach and TC positional errors in the ERA-Interim reanalysis do not affect the results significantly, but biases in peak wind speeds and TC sizes may lead to underestimates of moisture transport. The interannual variability does not appear to be strongly related to the El Nino-Southern Oscillation phenomenon

    Medical students who decompress during the M-1 year outperform those who fail and repeat it: A study of M-1 students at the University of Illinois College of Medicine at Urbana-Champaign 1988–2000

    Get PDF
    BACKGROUND: All medical schools must counsel poor-performing students, address their problems and assist them in developing into competent physicians. The objective of this study was to determine whether students with academic deficiencies in their M-1 year graduate more often, spend less time to complete the curriculum, and need fewer attempts at passing USMLE Step 1 and Step 2 by entering the Decompressed Program prior to failure of the M-1 year than those students who fail the M-1 year and then repeat it. METHOD: The authors reviewed the performance of M-1 students in the Decompressed Program and compared their outcomes to M-1 students who failed and fully repeated the M-1 year. To compare the groups upon admission, t-Tests comparing the Cognitive Index of students and MCAT scores from both groups were performed. Performance of the two groups after matriculation was also analyzed. RESULTS: Decompressed students were 2.1 times more likely to graduate. Decompressed students were 2.5 times more likely to pass USMLE Step 1 on the first attempt than the repeat students. In addition, 46% of those in the decompressed group completed the program in five years compared to 18% of the repeat group. CONCLUSION: Medical students who decompress their M-1 year prior to M-1 year failure outperform those who fail their first year and then repeat it. These findings indicate the need for careful monitoring of M-1 student performance and early intervention and counseling of struggling students
    • …
    corecore