2,241 research outputs found

    America Can Win: The Case for Military Reform

    Get PDF

    Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale

    Full text link
    We analyzed results from 10-year long field incubations of foliar and fine root litter from the Long-term Intersite Decomposition Experiment Team (LIDET) study. We tested whether a variety of climate and litter quality variables could be used to develop regression models of decomposition parameters across wide ranges in litter quality and climate and whether these models changed over short to long time periods. Six genera of foliar and three genera of root litters were studied with a 10-fold range in the ratio of acid unhydrolyzable fraction (AUF, or ‘lignin’) to N. Litter was incubated at 27 field sites across numerous terrestrial biomes including arctic and alpine tundra, temperate and tropical forests, grasslands and warm deserts. We used three separate mathematical models of first-order (exponential) decomposition, emphasizing either the first year or the entire decade. One model included the proportion of relatively stable material as an asymptote. For short-term (first-year) decomposition, nonlinear regressions of exponential or power function form were obtained with r 2 values of 0.82 and 0.64 for foliar and fine-root litter, respectively, across all biomes included. AUF and AUF : N ratio were the most explanative litter quality variables, while the combined temperature-moisture terms AET (actual evapotranspiration) and CDI (climatic decomposition index) were best for climatic effects. Regressions contained some systematic bias for grasslands and arctic and boreal sites, but not for humid tropical forests or temperate deciduous and coniferous forests. The ability of the regression approach to fit climate-driven decomposition models of the 10-year field results was dramatically reduced from the ability to capture drivers of short-term decomposition. Future work will require conceptual and methodological improvements to investigate processes controlling decadal-scale litter decomposition, including the formation of a relatively stable fraction and its subsequent decomposition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78615/1/j.1365-2486.2009.02086.x.pd

    The origin of HIMU in the SW Pacific : evidence from intraplate volcanism in southern New Zealand and subantarctic islands

    Get PDF
    Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Journal of Petrology 27 (2006): 1673-1704, doi:10.1093/petrology/egl024.This paper presents field, geochemical and isotopic (Sr, Nd, Pb) results on basalts from the Antipodes, Campbell and Chatham Islands, New Zealand. New 40Ar/39Ar age determinations along with previous K-Ar dates reveal three major episodes of volcanic activity on Chatham Island (85-82, 41-35, ~5 Ma). Chatham and Antipodes samples comprise basanite, alkali and transitional basalts that have HIMU-like isotopic (206Pb/204Pb >20.3-20.8, 87Sr/86Sr 0.5128) and trace element affinities (Ce/Pb 28-36, Nb/U 34-66, Ba/Nb 4-7). The geochemistry of transitional to Q-normative samples from Campbell Island is explained by interaction with continental crust. The volcanism is part of a long-lived (~100 Myr), low-volume, diffuse alkaline magmatic province that includes deposits on the North and South Islands as well as portions of West Antarctica and SE Australia. All of the continental areas were juxtaposed on the eastern margin of Gondwanaland at >83 Ma. A ubiquitous feature of mafic alkaline rocks from this region is their depletion in K and Pb relative to other highly incompatible elements when normalized to primitive mantle values. The inversion of trace element data indicates enriched mantle sources that contain variable proportions of hydrous minerals. We propose that the mantle sources represent continental lithosphere that host amphibole/phlogopite-rich veins formed by plume and/or subduction related metasomatism between 500 and 100 Ma. The strong HIMU signature (206Pb/204Pb >20.5) is considered to be an in-grown feature generated by partial-dehydration and loss of hydrophile elements (Pb, Rb, K) relative to more magmaphile elements (Th, U, Sr) during short-term storage at the base of the lithosphere.This study was supported by National Science Foundation Grants OPP-9419686 and OPP-0003702 awarded to KSP

    A–C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions

    Get PDF
    Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A–C estrogens, lacking the B and D estrogen rings. The most potent and selective A–C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC50s of 20–30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound’s ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A–C estrogen is selective, brain penetrant, and facilitates memory consolidation

    Analysis of the risk and pre-emptive control of viral outbreaks accounting for within-host dynamics: SARS-CoV-2 as a case study

    Get PDF
    世界初・新型コロナウイルス感染によるクラスター発生確率の計算に成功 --数理モデルに基づく効果的な感染症対策の確立へ重要な一歩--. 京都大学プレスリリース. 2023-10-05.In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks remains. Here, we develop a multiscale modelling framework for estimating the local outbreak risk for a viral disease (the probability that a major outbreak results from a single case introduced into the population), accounting for within-host viral dynamics. Compared to population-level models previously used to estimate outbreak risks, our approach enables more detailed analysis of how the risk can be mitigated through pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a case study, we quantify the within-host dynamics using data from individuals with omicron variant infections. We demonstrate that regular antigen testing reduces, but may not eliminate, the outbreak risk, depending on characteristics of local transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk by 45% compared to a scenario without antigen testing. Additionally, we show that accounting for heterogeneity in within-host dynamics between individuals affects outbreak risk estimates and assessments of the impact of antigen testing. Our results therefore highlight important factors to consider when using multiscale models to design pre-emptive interventions against SARS-CoV-2 and other viruses
    corecore