783 research outputs found

    Thermodynamic gauge-theory cascade

    Full text link
    It is proposed that the cooling of a thermalized SU(NN) gauge theory can be formulated in terms of a cascade involving three effective theories with successively reduced (and spontaneously broken) gauge symmetries, SU(NN) →\to U(1)N−1^{N-1} →\to ZN_N. The approach is based on the assumption that away from a phase transition the bulk of the quantum interaction inherent to the system is implicitly encoded in the (incomplete) classical dynamics of a collective part made of low-energy condensed degrees of freedom. The properties of (some of the) statistically fluctuating fields are determined by these condensate(s). This leads to a quasi-particle description at tree-level. It appears that radiative corrections, which are sizable at large gauge coupling, do not change the tree-level picture qualitatively. The thermodynamic self-consistency of the quasi-particle approach implies nonperturbative evolution equations for the associated masses. The temperature dependence of these masses, in turn, determine the evolution of the gauge coupling(s). The hot gauge system approaches the behavior of an ideal gas of massless gluons at asymptotically large temperature. A negative equation of state is possible at a stage where the system is about to settle into the phase of the (spontaneously broken) ZN_N symmetry.Comment: 25 pages, 6 figures, 1 reference added, minor corrections in text, errors in Sec. 3.2 corrected, PRD versio

    An insulin receptor mutant (Asp707 → Ala), involved in leprechaunism, is processed and transported to the cell surface but unable to bind insulin

    Get PDF
    We have identified a homozygous mutation near the carboxyl terminus of the insulin receptor (IR) α subunit from a leprechaun patient, changing Asp707 into Ala. Fibroblasts from this patient had no high affinity insulin binding sites. To examine the effect of the mutation on IR properties, the mutant IR was stably expressed in Chinese hamster ovary cells. Western blot analysis and metabolic labeling showed a normal processing of the mutant receptor to α and β subunits. No increase in high affinity insulin binding sites was observed on Chinese hamster ovary cells expressing the mutant receptor, and also, affinity cross-linking of 125I- labeled insulin by disuccinimidyl suberate to these cells failed to label the mutant α subunit. Biotinylation of cell surface proteins by biotin succinimidyl ester resulted in efficient biotinylation of the mutant IR α and β subunits, showing its presence on the cell surface. On solubilization of the mutant insulin receptor in Triton X. 100-containing buffers, 125I- insulin was efficiently cross-linked to the receptor a subunit by disuccinimidyl suberate. These studies demonstrate that Ala707 IR is normally processed and transported to the cell surface and that the mutation distorts the insulin binding site. Detergent restores this site. This is an example of a naturally occurring mutation in the insulin receptor that affects insulin binding without affecting receptor transport and processing. This mutation points to a major contribution of the a subunit carboxyl terminus to insulin binding

    Performance of risk assessment models for prevalent or undiagnosed type 2 diabetes mellitus in a multi-ethnic population: the Helius study

    Get PDF
    Background: Most risk assessment models for type 2 diabetes (T2DM) have been developed in Caucasians and Asians; little is known about their performance in other ethnic groups.Objective(s): We aimed to identify existing models for the risk of prevalent or undiagnosed T2DM and externally validate them in a multi-ethnic population currently living in the Netherlands.Methods: A literature search to identify risk assessment models for prevalent or undiagnosed T2DM was performed in PubMed until December 2017. We validated these models in 4,547 Dutch, 3,035 South Asian Surinamese, 4,119 African Surinamese, 2,326 Ghanaian, 3,598 Turkish, and 3,894 Moroccan origin participants from the HELIUS (Healthy LIfe in an Urban Setting) cohort study performed in Amsterdam. Model performance was assessed in terms of discrimination (C-statistic) and calibration (Hosmer-Lemeshow test). We identified 25 studies containing 29 models for prevalent or undiagnosed T2DM. C-statistics varied between 0.77-0.92 in Dutch, 0.66-0.83 in South Asian Surinamese, 0.70-0.82 in African Surinamese, 0.61-0.81 in Ghanaian, 0.69-0.86 in Turkish, and 0.69-0.87 in the Moroccan populations. The C-statistics were generally lower among the South Asian Surinamese, African Surinamese, and Ghanaian populations and highest among the Dutch. Calibration was poor (Hosmer-Lemeshow p < 0.05) for all models except one.Conclusions: Generally, risk models for prevalent or undiagnosed T2DM show moderate to good discriminatory ability in different ethnic populations living in the Netherlands, but poor calibration. Therefore, these models should be recalibrated before use in clinical practice and should be adapted to the situation of the population they are intended to be used in.Therapeutic cell differentiatio

    Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene

    Get PDF
    Previously, we have shown that a mutation in the mitochondrial DNA-encoded tRNA(Leu(UUR)) gene is associated with type 2 diabetes. One of the consequences of this mutation is a reduced aminoacylation of tRNA(Leu(UUR)). In this study, we have examined whether variants in the leucyl tRNA synthetase gene (LARS2), involved in aminoacylation of tRNA(Leu(UUR)), associate with type 2 diabetes. Direct sequencing of LARS2 cDNA from 25 type 2 diabetic subjects revealed eight single nucleotide polymorphisms. Two of the variants were examined in 7,836 subjects from four independent populations in the Netherlands and Denmark. A -109 g/a variant was not associated with type 2 diabetes. Allele frequencies for the other variant, H324Q, were 3.5% in type 2 diabetic and 2.7% in control subjects, respectively. The common odds ratio across all four studies was 1.40 (95% CI 1.12-1.76), P = 0.004. There were no significant differences in clinical variables between carriers and noncarriers. In this study, we provide evidence that the LARS2 gene may represent a novel type 2 diabetes susceptibility gene. The mechanism by which the H324Q variant enhances type 2 diabetes risk needs to be further established. This is the first report of association between an aminoacyl tRNA synthetase gene and disease. Our results further highlight the important role of mitochondria in glucose homeostasis

    Genetic factors and insulin secretion: gene variants in the IGF genes

    Get PDF
    IGFs are important regulators of pancreatic beta-cell development, growth, and maintenance. Mutations in the IGF genes have been found to be associated with type 2 diabetes, myocardial infarction, birth weight, and obesity. These associations could result from changes in insulin secretion. We have analyzed glucose-stimulated insulin secretion using hyperglycemic clamps in carriers of a CA repeat in the IGF-I promoter and an ApaI polymorphism in the IGF-II gene. Normal and impaired glucose-tolerant subjects (n = 237) were independently recruited from three different populations in the Netherlands and Germany to allow independent replication of associations. Both first- and second-phase insulin secretion were not significantly different between the various IGF-I or IGF-II genotypes. Remarkably, noncarriers of the IGF-I CA repeat allele had both a reduced insulin sensitivity index (ISI) and disposition index (DI), suggesting an altered balance between insulin secretion and insulin action. Other diabetes-related parameters were not significantly different for both the IGF-I and IGF-II gene variant. We conclude that gene variants in the IGF-I and IGF-II genes are not associated with detectable variations in glucose-stimulated insulin secretion in these three independent populations. Further studies are needed to examine the exact contributions of the IGF-I CA repeat alleles to variations in ISI and DI

    Plasma protein N-glycosylation is associated with cardiovascular disease, nephropathy, and retinopathy in type 2 diabetes

    Get PDF
    Introduction Although associations of total plasma N-glycome (TPNG) with type 2 diabetes have been reported, little is known on the role of TPNG in type 2 diabetes complications, a major cause of type 2 diabetes-related morbidity and mortality. Here, we assessed TPNG in relation to type 2 diabetes complications in subsamples of two Dutch cohorts using mass spectrometry (n=1815 in DiaGene and n=1518 in Hoorn Diabetes Care System).Research design and methods Blood plasma samples and technical replicates were pipetted into 96-well plates in a randomized manner. Peptide:N-glycosidase F (PNGase F) was used to release N-glycans, whereafter sialic acids were derivatized for stabilization and linkage differentiation. After total area normalization, 68 individual glycan compositions were quantified in total and were used to calculate 45 derived traits which reflect structural features of glycosylation. Associations of glycan features with prevalent and incident microvascular or macrovascular complications were tested in logistic and Cox regression in both independent cohorts and the results were meta-analyzed.Results Our results demonstrated similarities between incident and prevalent complications. The strongest association for prevalent cardiovascular disease was a high level of bisection on a group of diantennary glycans (A2FS0B; OR=1.38, p=1.34x10(-11)), while for prevalent nephropathy the increase in 2,6-sialylation on triantennary glycans was most pronounced (A3E; OR=1.28, p=9.70x10(-6)). Several other TPNG features, including fucosylation, galactosylation, and sialylation, firmly demonstrated associations with prevalent and incident complications of type 2 diabetes.Conclusions These findings may provide a glance on how TPNG patterns change before complications emerge, paving the way for future studies on prediction biomarkers and potentially disease mechanisms.Molecular Epidemiolog

    Long RNA sequencing and ribosome profiling of inflamed beta-cells reveal an extensive translatome landscape

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of the insulin-producing pancreatic beta -cells. Increasing evidence suggest that the beta -cells themselves contribute to their own destruction by generating neoantigens through the production of aberrant or modified proteins that escape central tolerance. We recently demonstrated that ribosomal infidelity amplified by stress could lead to the generation of neoantigens in human beta -cells, emphasizing the participation of nonconventional translation events in autoimmunity, as occurring in cancer or virus-infected tissues. Using a transcriptome-wide profiling approach to map translation initiation start sites in human beta -cells under standard and inflammatory conditions, we identify a completely new set of polypeptides derived from noncanonical start sites and translation initiation within long noncoding RNA. Our data underline the extreme diversity of the beta -cell translatome and may reveal new functional biomarkers for beta -cell distress, disease prediction and progression, and therapeutic intervention in T1D.Molecular Epidemiolog

    A gene variant near ATM is significantly associated with metformin treatment response In type 2 diabetes: A replication and meta-analysis of five cohorts

    Get PDF
    _Aims/hypothesis:_ In this study we aimed to replicate the previously reported association between the glycaemic response to metformin and the SNP rs11212617 at a locus that includes the ataxia telangiectasia mutated (ATM) gene in multiple additional populations. _Methods:_ Incident users of metformin selected from the Diabetes Care System West-Friesland (DCS, n=929) and the Rotterdam Study (n=182) from the Netherlands, and the CARDS Trial (n=254) from the UK were genotyped for rs11212617 and tested for an association with both HbA1c reduction and treatment success, defined as the ability to reach the treatment target of an HbA1c ≤7 % (53 mmol/mol). Finally, a meta-analysis including data from literature was performed. _Results:_ In the DCS cohort, we observed an association between rs11212617 genotype and treatment success on metformin (OR 1.27, 95% CI 1.03, 1.58, p=0.028); in the smaller Rotterdam Study cohort, a numerically similar but non-significant trend was observed (OR 1.45, 95% CI 0.87, 2.39, p=0.15); while in the CARDS cohort there was no significant association. In meta-analyses of these three cohorts separately or combined with the previously published cohorts, rs11212617 genotype is associated with metformin treatment success (OR 1.24, 95% CI 1.04, 1.49, p=0.016 and OR 1.25, 95% CI 1.33, 1.38, p=7.8×10-6, respectively). _ Conclusions/inte
    • …
    corecore