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OBJECTIVE

To estimate the impact on lifetime health and economic outcomes of different
methods of stratifying individuals with type 2 diabetes, followed by guideline-
based treatment intensification targeting BMI and LDL in addition to HbA1c.

RESEARCH DESIGN AND METHODS

We divided 2,935 newly diagnosed individuals from the Hoorn Diabetes Care System
(DCS) cohort into five Risk Assessment and Progression of Diabetes (RHAPSODY)
data-driven clustering subgroups (based on age, BMI, HbA1c, C-peptide, and HDL)
and four risk-driven subgroups by using fixed cutoffs for HbA1c and risk of cardiovas-
cular disease based on guidelines. The UK Prospective Diabetes Study Outcomes
Model 2 estimated discounted expected lifetime complication costs and quality-
adjusted life-years (QALYs) for each subgroup and across all individuals. Gains from
treatment intensification were compared with care as usual as observed in DCS. A
sensitivity analysis was conducted based on Ahlqvist subgroups.

RESULTS

Under care as usual, prognosis in the RHAPSODY data-driven subgroups ranged from
7.9 to 12.6 QALYs. Prognosis in the risk-driven subgroups ranged from 6.8 to 12.0
QALYs. Compared with homogenous type 2 diabetes, treatment for individuals in the
high-risk subgroups could cost 22.0% and 25.3% more and still be cost effective for
data-driven and risk-driven subgroups, respectively. Targeting BMI and LDL in addi-
tion to HbA1c might deliver up to 10-fold increases in QALYs gained.

CONCLUSIONS

Risk-driven subgroups better discriminated prognosis. Both stratification methods
supported stratified treatment intensification, with the risk-driven subgroups being
somewhat better in identifying individuals with the most potential to benefit from
intensive treatment. Irrespective of stratification approach, better cholesterol and
weight control showed substantial potential for health gains.

To capture the heterogeneity and refine the current stratification of type 2 diabetes,
a novel data-driven clustering analysis by Ahlqvist et al. (1) identified five subgroups,
including severe autoimmune diabetes, severe insulin deficiency diabetes (SIDD), se-
vere insulin resistance diabetes (SIRD), mild obesity-related diabetes (MOD), and mild
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age-related diabetes (MARD), based on
clinical parameters. These data-driven clus-
tering methods have been replicated in
many cohorts (2–6). However, questions
remain concerning their clinical utility and
cost-effectiveness. Soft clustering (7) or
stratification based on predicted risk as
estimated from continuous clinical fea-
tures (2,8,9) might also identify type 2
diabetes phenotypes or predict out-
comes for individuals, and it has been
shown that using clinical measures in a
regression model may outperform clus-
tering for prediction of nephropathy risk
and response to treatment (2). Nonethe-
less, data-driven clustering analysis might
identify underlying phenotypic and path-
ologic subgroups and thus benefit medi-
cal decisions (6,10,11).

Alternatively, individuals could be clas-
sified based on clinically relevant risk
thresholds as applied in diabetes and car-
diovascular guidelines. European guide-
lines on cardiovascular disease prevention
(12–14) recommend using the Systematic
Coronary Risk Evaluation (SCORE) system
(15) to inform intensity of care. U.S. and
European guidelines for type 2 diabetes
focus on HbA1c values or goals to inform
medical care (16,17).

In addition to uncertainty concerning the
clinical utility of stratification approaches, it
is unclear whether these approaches could
potentially support a cost-effective use of
health care resources. Allocating individuals
into subgroups may help clinicians to make
decisions aboutwhether to treat individuals
intensively because in some subgroups, in-
dividuals may benefit more from intensive
treatment than the average or those in
other subgroups (2). However, the potential
benefit of this strategy to help decision
making has not been explicitly evaluated.
Hence,weuseddata from2,935 contempo-
rary individuals with type 2 diabetes from
the Hoorn Diabetes Care System (DCS) to
simulate the potential effect of their stratifi-
cation (via data-driven clustering or using
prespecified cutoffs for risk factor levels)
and treatment intensification, relative to
usual care, on predicted costs and (quality-
adjusted) life expectancy. We further ex-
plored the potential gains from targeting
cholesterol andweight, in addition toHbA1c,
in each subgroup and across all individuals.

To help decision making, we expressed
our results as the maximum annual price
in U.S. and U.K. settings that can be spent
in the health care sector for identification
and treatment of a certain subgroup while

remaining cost-effective. This straightfor-
ward indicator will inform clinicians and
decision makers on whether intensifying
treatment is beneficial and cost-effective.

RESEARCH DESIGN AND METHODS

Study Population
The DCS is a comprehensive dynamic
prospective cohort of the natural course
of type 2 diabetes from 103 general
practitioners in the West Friesland re-
gion of the Netherlands (18). Laboratory
measurements have been described in
detail in previous studies (18,19).

The study population consisted of 2,935
individuals with newly diagnosed type 2 di-
abetes over the period 1998–2019 in the
DCS cohort (Supplementary Appendix 1).
Our inclusion criteria were age at diagnosis
$35 years, clinical parameters available
within 2 years after diagnosis, negative for
GAD, complete data in clustering variables,
and the presence of genome-wide associa-
tion study data (19). The ethical review
committee of VU University Medical Cen-
ter approved the study, and informed con-
sent was obtained from all participants.

Data-Driven Subgroups and
Risk-Driven Subgroups
A recent study, as part of Risk Assess-
ment and Progression of Diabetes project
(RHAPSODY; https://www.imi.europa.eu/
projects-results/project-factsheets/rhapsody),
applied the data-driven clustering approach
by Ahlqvist et al. (1) to participants with
diabetes in three routine care cohorts, in-
cluding the DCS. The RHAPSODY subgroups
used clinical parameters available in routine
care, replaced HOMA estimates in Ahlqvist’s
subgroups with C-peptide, and added HDL
as an extra cluster indicator. This cluster rep-
lication in external data demonstrated a
good concordance between cohorts and
with the original clustering by Ahlqvist et al.,
while additionally refining the MARD into
two subgroups (1,19,20).

Hence, as shown in Table 1, individuals
in DCS were assigned to one of five RHAP-
SODY subgroups (19), including RHAPSODY
SIDD (RHAP-SIDD), RHAP-SIRD, RHAP-MOD,
RHAPSODY mild diabetes (RHAP-MD), and
RHAPSODY mild diabetes with high HDL
(RHAP-MDH), based on sex-specific k-means
clustering by five scaled clustering indicators
including age, BMI, HbA1c, C-peptide, and
HDL. The full details of the clustering meth-
ods and results have been published previ-
ously (1,19).

We also stratified individuals in DCS ac-
cording to a combination of HbA1c values
and SCORE levels using prespecified thresh-
olds (Table 1). The values were selected
to reflect American Diabetes Association
(ADA) (17) and European recommenda-
tions (16) on glucose goals (HbA1c <7%
[53 mmol/mol]) and European recommen-
dations on cardiovascular riskmanagement
(with a SCORE of 5% discriminating be-
tween high or higher and moderate to
lower cardiovascular risk categories) (14).

Care-as-Usual and Intensive Diabetes
Management Strategies
The observed trajectories of risk factors
such as HbA1c and lipid levels captured
care as usual in the contemporary DCS
population. Intensive diabetes manage-
ment interventions were simulated as
guideline-based treat-to-target strategies
because subgroup-specific treatment ef-
fects are unknown. We assumed that
prespecified glycemic targets based on
the ADA (17) and European guidelines
(16) would be achieved (Supplementary
Material Table 2.1). We followed Euro-
pean guidelines (14) for LDL and weight
treatment targets. We analyzed a 5-year
intensive intervention. Once intensive
management interventions were discon-
tinued, we assumed that risk factors
would revert immediately to values ob-
served under care as usual (base case).

Simulation
We used the UK Prospective Diabetes
Study Outcomes Model version 2 (UKPDS-
OM2) to simulate lifetime health out-
comes and costs of the DCS cohort (21).
The UKPDS-OM2 predicts an individual’s
absolute probability of experiencing any of
eight diabetes complications (myocardial
infarction, stroke, heart failure, ischemic
heart disease, amputation, renal failure,
blindness in one eye, foot ulcers) and
death (21). These predictions depend on
the individual’s age, ethnicity, sex, and
time-varying clinical risk factors (including
diabetes duration, systolic blood pressure
[SBP], HbA1c, lipid levels, smoking status,
and history of previous complications) (21).
Model outputs include annual event prob-
abilities, life expectancy, quality-adjusted
life-years (QALYs), and lifetime costs.

The UKPDS-OM2 has been validated
both internally and externally (21–23),
and it has shown good performance in
predicting macrovascular events in DCS
(23). As our study focuses on the model’s
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ability to capture differences between
subgroups, we validated the relative risks
of incidence of events for subgroups by
testing whether simulated relative risks
fell within the 95% CI of observed rela-
tive risks.
The model input variables are listed in

Supplementary Appendix 2. We simu-
lated an individual’s lifetime outcomes
for both care-as-usual and intensive dia-
betes management strategies. A 70-year
simulation period was chosen to reflect a
lifetime (study population minimum age
35 years).
After data cleaning (0.95% missing data)

(Supplementary Appendix 3), baseline
characteristics of each data-driven and
risk-driven subgroup, as included in the
simulation, were reported by frequency
(percentage) for categorical variables or
mean (SD) for continuous variables. An
x2 test was applied to check for significant
differences between subgroups within each
stratification approach.
We used observed data until the end of

the follow-up in the DCS cohort. For HbA1c,
LDL, BMI, and estimated glomerular filtra-
tion rate (eGFR) values after the end of
follow-up, we extrapolated their progression
using linear dynamic models fitted to DCS
observations (Supplementary Appendix 4).
As HDL and SBP remained relatively con-
stant throughout the observation period
(Supplementary Figs. 2.1 and 2.2), we ex-
trapolated these by last observation carried
forward.
A health care perspective was applied,

and costs and utilities associated with di-
abetes management and diabetes-related
complications were obtained for the U.S.
and U.K. settings (Supplementary Table 2.3).
Costs were expressed in 2019 values,

inflated to that year using a price index.
Costs and QALYs were discounted at
3.0% in the U.S. setting (24) and 3.5% in
the U.K. setting (25).

Simulated Outcomes and
Standardization
Lifetime costs and QALYs for each sub-
group under care as usual were simu-
lated (mean and 95% CI). To remove the
effect of unmodifiable risk factors (i.e.,
age and sex), we standardized the esti-
mates to the average age for men and
women separately in DCS (i.e., a 62-year-
old man and a 63-year-old woman) by re-
gressing the individual-level UKPDS-OM2–
simulated outcomes on their age.

Maximum Annual Cost-Effective
Price of Stratification and Intensive
Management Interventions
Intensive management interventions were
deemed cost-effective if the incremental
cost-effectiveness ratio was below the
threshold of $100,000 and £20,000 per
QALY in the U.S. and U.K, respectively
(25,26).Weestimated themaximumannual
price for each strategy that would not ex-
ceed cost-effectiveness thresholds (equa-
tions in Supplementary Appendix 5) by
subgroup and overall. A higher maximum
annual price indicates that the subgroup
can spend more on diabetes management
costs while remaining cost-effective. The
range (maximum�minimum) inmaximum
prices and in incremental QALYs among
subgroups was used to indicate to what de-
gree subgroups could distinguish between
groups of individuals for whom intensive
treatment was potentially more or less
cost-effective.

Uncertainty
The analysis accounted for two types of
uncertainty: Monte Carlo simulation error
and parameter uncertainty. We reduced
Monte Carlo simulation error by averag-
ing 50,000 simulations per individual, and
propagated parameter uncertainty by per-
forming 400 random draws of different
sets of model parameters derived from
the UKPDS trial population (21). Maximum
cost-effective prices of stratification and in-
tensive treatments and further model out-
comes were estimated for each of the 400
draws, and the 2.5% and 97.5% percen-
tiles were used to present the level of
uncertainty.

Sensitivity Analyses
To analyze the difference caused by differ-
ent data-driven clustering approaches, in-
dividuals in DCS were also assigned to one
of four subgroups following the method
by Ahlqvist et al. (1), including SIDD, SIRD,
MOD, and MARD based on sex-specific
k-means clustering by five scaled clustering
indicators, including age at diagnosis, BMI,
HbA1c, HOMAestimates (27) ofb-cell func-
tion, and insulin resistance by C-peptide
and fasting glucose. Because reaching
treatment targets might be difficult, espe-
cially for weight loss, we analyzed a conser-
vative 5% improvement scenario in which
the values of care-as-usual risk factors will
be improved by 5% based on the recom-
mendation of achieving and maintaining
$5% weight loss by ADA guidelines (28).
We varied the duration of the intensive
management interventions from 5 years
to 10, 15, and 20 years. Moreover, we
considered risk factors for returning to a
care-as-usual trajectory gradually, rather
than immediately, by introducing a sce-
nario analysis in which the linear dynamic
models for risk factor progression would
inform the subsequent risk factor trajecto-
ries until they reached the observed care-
as-usual values (scenario 1). Graphical
representations of the scenario assump-
tions are presented in Supplementary
Fig. 2.3.

Data and Resource Availability
The data are not publicly available but
can be requested from VU University
Medical Center. We accessed the data
via a formal data request as a part of
the RHAPSODY project.

Table 1—Subgroup characteristics and cutoffs

Subgroup Characteristic or cutoff n (%)

RHAPSODY data driven
RHAP-SIDD High HbA1c 365 (12.44)
RHAP-SIRD High C-peptide and age 637 (21.70)
RHAP-MOD High BMI and C-peptide 520 (17.72)
RHAP-MD Moderate in clustering indicators 860 (29.30)
RHAP-MDH High HDL 553 (18.84)

Risk driven*

H1S1 HbA1c <7% and SCORE <5% 1,274 (43.41)
H1S2 HbA1c <7% and SCORE $5% 542 (18.47)
H2S1 HbA1c $7% and SCORE <5% 841 (28.65)
H2S2 HbA1c $7% and SCORE $5% 278 (9.47)

H1S1, low HbA1c and low SCORE level. *Additional information on the SCORE project can
be found in Conroy et al. (15).
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RESULTS

Baseline Characteristics
We found significant differences in base-
line characteristics in both data-driven sub-
groups and risk-driven subgroups (Table 2
and Supplementary Appendix 6). Of note,
higher mean age was observed in the
RHAP-SIRD, RHAP-MDH, and subgroups
with high SCORE values compared with
the remaining subgroups.

Lifetime Costs and Outcomes of
Subgroups Under Care as Usual
Supplementary Figs. 7.1 and 7.2 show that
simulated relative risks fit within the 95% CI
of observed relative risks among subgroups,
indicating that UKPDS-OM2 was able to re-
flect differences between subgroups in risks.
Figure 1 and Supplementary Appendix 8
show the simulated lifetime costs and
QALYs and their standardization toanaverage
individual (62-year-old man or 63-year-old
woman) for all data-driven and risk-driven
subgroups and across all individuals
with type 2 diabetes in DCS under care
as usual (i.e., without intensive manage-
ment intervention).

On average, an individual with type 2
diabetes in DCS was predicted to accrue
10.57 QALYs and $165,000 in complica-
tion costs in their remaining lifetime
(Supplementary Table 8.1). Both stratifi-
cation methods showed significant differ-
ences in QALYs and complication costs
among subgroups (Fig. 1). For data-driven
subgroups, as expected, subgroups with
older individuals had the worst simulated
outcomes. The RHAP-SIRD subgroup had
the lowest QALYs (7.90) and complication
costs ($125,000) and was predicted to
have the highest diabetes-related macro-
vascular complication rates, explaining its
low QALYs (Supplementary Fig. 8.2). For
risk-driven subgroups, the high HbA1c and
high SCORE level (H2S2) subgroup had
the lowest QALYs (6.83) and complication
costs ($114,000), with the highest simulated
diabetes-related complication rates among
all subgroups (Supplementary Fig. 8.3). Even
at high rates of complication, complication
costs were low when life expectancy was
low.

After adjusting for sex and age, a stan-
dardized 62-year-old man and 63-year-
old woman in DCS were predicted to ac-
crue 9.98 and 11.12 QALYs and $154,000
and $176,000 in complication costs, re-
spectively. For data-driven subgroups, the
lowest standardized QALYs were seen in
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RHAP-MOD for men (10.02) and RHAP-
SIDD for women (10.88). For risk-driven
subgroups, the ranking remained the
same as before standardization, with the
lowest standardized QALYs seen in H2S2
(men 8.73; women 10.22). The U.K. and
U.S. settings featured similar outcomes,
except the absolute values of the U.K.
setting were lower because of higher dis-
counting rates and lower complication
costs (Supplementary Fig. 8.1 and Supple-
mentary Table 8.2).

Maximum Annual Price of
Stratification and Intensive
Management
Table 3 shows the incremental complica-
tion costs, QALYs, and maximum prices
of guideline-based treat-to-target strategy
in the U.S. setting (threshold of $100,000
per QALY). The outcomes of the remain-
ing scenarios are provided in Supple-
mentary Appendix 9.
Treat-to-target strategies led to an aver-

age reduction of 0.2% or 2.5 mmol/mol
(2.7%) in HbA1c, 0.5 mmol/L (14.7%) in
LDL, and 5.0 kg/m2 (15.0%) in BMI (14.9 kg in
weight) (Supplementary Tables 2.4 and 2.5).
In the base case, without stratification into
subgroups, treat-to-target of HbA1c could
cost up to $169 additionally per year while

remaining below the $100,000 per QALY
threshold. Furthermore, treating to the target
of LDL and BMI in addition to HbA1c could
cost up to $1,499 per year and remain
cost-effective.

For RHAPSODY data-driven subgroups,
intensive management interventions tar-
geting HbA1c resulted in the largest gains
in QALYs (0.019) in the RHAP-SIDD sub-
group and could cost up to $368 per year
and remain cost-effective. This finding in-
dicates that individuals in the RHAP-SIDD
subgroup can spend $199 more on diabe-
tes management than individuals with
type 2 diabetes overall while remaining
cost-effective.

Compared with focusing on HbA1c only,
treatment targeting HbA1c, BMI, and LDL
in combination achieved 10 times higher
gains in QALYs and could cost substan-
tially more per year while remaining cost-
effective, ranging from 0.044 QALYs and
$799 per person in the RHAP-MD sub-
group to 0.112 QALYs and $1,973 per
person in the RHAP-MOD subgroup. On
average, for individuals in high-risk sub-
groups (RHAP-SIDD, RHAP-SIRD, and RHAP-
MOD), the maximum annual price of
intensive management in the U.S. setting
could be 30.7% higher while remaining

cost-effective compared with the no strati-
fication scenario.

For risk-driven subgroups, intensiveman-
agement solely targeting HbA1c resulted in
the largest gains in QALYs in the subgroups
with high HbA1c levels (0.017 for high HbA1c
and low SCORE level [H2S1] and 0.012 for
H2S2) and could cost up to $323 and $270
per year, respectively, while remaining cost-
effective. Compared with solely targeting
HbA1c, treatment targeting BMI and LDL
achieved more than 10 times the gains in
QALYs and could cost substantially more at
up to 0.114QALYs and $2,578 per person in
the H2S2 subgroup. On average, for individ-
uals in high-risk subgroups (H2S1, lowHbA1c
and high SCORE level [H1S2], and H2S2) the
maximum annual price of intensive man-
agement could be 31.2% higher, compared
with a no stratification scenario, while re-
maining cost-effective in theU.S. setting.

Sensitivity Analyses
Replicating the current analyses by fol-
lowing the subgroups of Ahlqvist et al.
(1) led to robust findings about dis-
crimination (Supplementary Appendix
10). BMI (37.82 kg/m2) and C-peptide
(1.43 nmol/L) values in RHAP-MOD were
significantly higher than MOD (33.51 kg/m2

Figure 1—Nonstandardized and standardized mean simulated lifetime QALYs and costs in the U.S. setting for data-driven and risk-driven sub-
groups. The horizontal solid lines and dashed lines indicate the average value and its 95% CI. A, D, G, and J: Lifetime QALYs and costs. B, E, H, and
K: Male standardized QALYs and costs. C, F, I, and L: Female standardized QALYs and costs. H1S1, low HbA1c and low SCORE level.
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and 1.04 nmol/L, respectively) (Supplemen-
tary Table 10.2). Although we observed
RHAP-SIRD to have significantly higher BMI
compared with other RHAPSODY subgroups
except RHAP-MOD (Supplementary Fig. 6.2),
this difference was less pronounced than
the BMI difference observed between
SIRD and SIDD or MARD by Ahlqvist et al.
(Supplementary Fig. 10.2). MARD had
the lowest absolute simulated QALYs, but
after standardization, SIRD had the low-
est QALYs (Supplementary Figs. 10.7 and
10.8). SIRD and MARD generally had the
highest risk of complications, except for
SIDD, which had the highest risk of am-
putation (Supplementary Fig. 10.9).

The scenario of a 5% improvement led
to similar findings as the treat-to-target
scenario, although with a less substantial
reduction in risk factors (Supplementary
Tables 2.4 and 2.5) and, therefore, less dif-
ference in results (Supplementary Tables
9.1–9.4). Overall, in considering both sce-
narios, compared with homogenous type 2
diabetes, treatment for individuals in high-
risk subgroups could cost on average 22.0%
and 25.3% more and still be cost-effective
for data-driven and risk-driven subgroups,
respectively.

A longer treatment period implied
lowermaximumannual prices of intensive
managementwhile remaining cost-effective
(Supplementary Figs. 9.1–9.3). Allowing the

treatment effect to extend beyond the hy-
pothetical treatment period (scenario 1) led
tomore incrementalQALYs andhighermax-
imum annual prices of intensive manage-
ment among subgroups. In all scenarios,
intensive management could cost signifi-
cantly more in high-risk subgroups com-
pared with no stratification and remain
cost-effective.

CONCLUSIONS

The data-driven subgroups were able to
stratify individuals with diverse prognosis,
displaying significant differences in simu-
lated lifetimeQALYs and complication costs.
However, the risk-driven subgroups showed
somewhat larger differences between high-
and low-risk subgroups compared with the
data-driven subgroups. Both data-driven
subgroups and risk-driven subgroups could
support stratifying individuals for prioritiz-
ing treat-to-target strategies. For the indi-
viduals in high-risk subgroups, resources
higher than average could be committed
for treat-to-target strategies while remain-
ing cost-effective. This difference in maxi-
mum annual prices indicates substantial
financial incentives to identify individuals
in high-risk groups and treat them more
intensively.

About two-thirds of individuals with
diabetes fail to achieve HbA1c targets

(7%) (17,29), and we show the potential
gains and value of targeting HbA1c only.
However, targeting LDL and BMI, in ad-
dition to HbA1c, offered significant ben-
efits in contemporary populations like
the DCS. This finding is important when
>90% of individuals with type 2 diabe-
tes are overweight or obese (30) and
less than one-half reach LDL targets
(31). Our predicted gains may partly re-
flect that current targets for BMI and
LDL are quite ambitious compared with
actual risk factor levels observed in pop-
ulations (32–34). Rather than treat-
to-target, using 5% reductions of risk fac-
tor levels has produced similar findings
but of smaller magnitude. Furthermore,
the RHAP-SIRD, RHAP-SIDD, RHAP-MOD,
and H2S2 subgroups benefited most
from jointly targeting HbA1c, LDL, and
BMI. These subgroups had the largest
simulated QALY gains from a combined
intervention, highlighting an opportunity
to target specific subgroups of individuals
more intensively. Specifically, in a contem-
porary care-as-usual setting, the RHAP-
SIRD and H2S2 subgroups had the low-
est predicted lifetime QALYs and the
highest risk of complications among all
subgroups, partly driven by patient ad-
vanced age.

The findings regarding differences in
baseline characteristics were in line with

Table 3—Outcomes of 5-year guideline-based intensive management targeting HbA1c, BMI, and LDL and targeting only
HbA1c compared with care as usual by subgroup in base case U.S. setting

Subgroup

Treat-to-target hypothetical intensive management

HbA1c HbA1c 1 LDL 1 BMI

Maximum annual
price of intervention ($)

DQALY vs. care
as usual

Maximum annual price
of intervention ($)

DQALY vs. care
as usual

Overall* 169 (97–222) 0.008 (0.005–0.011) 1,499 (1,132–1,776) 0.073 (0.058–0.09)

RHAPSODY data driven

RHAP-MOD 221 (150–296) 0.012 (0.008–0.015) 1,973 (1,444–2,603) 0.112 (0.083–0.146)
RHAP-MD 116 (67–167) 0.006 (0.004–0.009) 799 (666–966) 0.044 (0.036–0.052)
RHAP-SIDD 368 (248–477) 0.019 (0.013–0.024) 1,504 (1,233–1,779) 0.079 (0.065–0.092)
RHAP-MDH 58 (6–111) 0.003 (0–0.005) 1,267 (986–1,566) 0.061 (0.047–0.075)
RHAP-SIRD 96 (48–148) 0.004 (0.002–0.007) 1,902 (1,519–2,335) 0.087 (0.069–0.106)
Range† 309 0.016 1,174 0.068

Risk driven

H1S1 82 (42–117) 0.004 (0.002–0.006) 930 (723–1,182) 0.052 (0.041–0.066)
H2S1 323 (235–416) 0.017 (0.012–0.021) 1,247 (990–1,546) 0.069 (0.055–0.084)
H1S2 69 (23–120) 0.003 (0–0.005) 2,356 (1,897–2,894) 0.105 (0.085–0.129)
H2S2 270 (164–396) 0.012 (0.007–0.017) 2,578 (2,080–3,100) 0.114 (0.093–0.137)
Range† 253 0.014 1,647 0.062

H1S1, low HbA1c and low SCORE level. *Overall refers to a homogenous type 2 diabetes group. Results were generated based on extrapola-
tions of subgroup-specific linear dynamic models and summarized by subgroup information. The overall result is summarized by the assump-
tion that every individual was within this homogenous type 2 diabetes group. Each extrapolation from either RHAPSODY data-driven
subgroups’ or risk-driven subgroups’ linear dynamic models led to an overall result, and the final overall result was taken as the average
value. †Range is defined as the maximum – minimum of the mean maximum annual cost-effective price of intervention or incremental QALY.
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previous studies (1,19). In addition, our
article presents that, across all RHAP-
SODY data-driven subgroups, a guideline-
based 5-year comprehensive intervention
to lower HbA1c, BMI, and LDL could cost
up to $799–$1,973 per year in the U.S.
and £196–£463 per year in the U.K. at
$100,000 per QALY and £20,000 per
QALY cost-effectiveness thresholds, re-
spectively. Thus, the costs of measuring
any clustering indicators and intensifying
treatment must be lower than these
values for a subtype-specific treatment
strategy to be cost-effective. For risk-
driven subgroups, the intervention could
cost up to $930–$2,578 per year in the
U.S. and £230–£515 per year in the U.K.
to be cost-effective. These ranges indicate
financial incentives and potential benefits
resulting from stratification of type 2 dia-
betes. The higher the range in annual pri-
ces, the more helpful stratification could
be to inform treatment prioritization.
Comparing two stratification methods,

risk-driven subgroups discriminated indi-
viduals better between mild and severe
conditions than data-driven subgroups in
the care-as-usual setting. Data-driven clus-
tering better identified individuals who
would benefit from more intensive glu-
cose treatment alone. Risk-driven sub-
groups better identified individuals who
would benefit from more intensive treat-
ment targeting lipids, weight, and HbA1c
together. In general, also considering their
more straightforward implementation, risk-
driven subgroups seem better suited than
data-driven subgroups for stratifying indi-
viduals with different risks and guiding
comprehensive treatment.
Consistent with previous findings (19),

RHAPSODY subgroups resembled those
of Ahlqvist et al. (1), except that the
RHAP-SIRD subgroup was older, less insu-
lin resistant, and had a lower BMI than
SIRD, while the RHAP-MOD subgroup
had a higher BMI and was more insulin
resistant than MOD. Although differences
exist in their characteristics, using either
of these two methods of data-driven
clustering led to the same conclusion
that classifying type 2 diabetes according
to cutoffs for HbA1c and cardiovascular
risk might better identify individuals for
treatment intensification compared with
data-driven clustering. Furthermore, MOD
is being recognized as a mild diabetes
subgroup, but this recognition is highly in-
fluenced by the young age of individuals
in that subgroup. In both RHAPSODY and

Ahlqvist’s subgroups, after age standardi-
zation, the MOD subgroup had similar or
even lower lifetime QALYs compared with
other severe subgroups, including SIDD
and SIRD, indicating that despite this
group’s mild designation, this popula-
tion with high BMI still requires careful
management.

This study had several limitations. First,
despite the generally good fit of the linear
dynamic models (Supplementary Appendix
4), they slightly underestimated eGFR, lead-
ing to overestimated kidney damage and
underestimated QALYs. However, this likely
had minimal impact on relative subgroup
differences. Second, UKPDS-OM2 simula-
tions predict complications using risk factor
trajectories and preexisting complications.
The prediction of risk factor trajectories
was specified by subgroup based on
subgroup-specific predictionmodels, while
the prediction of complications was not
specific to subgroups.The treatment inten-
sification scenarios investigated were hy-
pothetical and based on changes to risk
factors to meet treatment targets. Our re-
sults provide a benchmark for stratified
treatment strategies, allowing comparison
of different stratification approaches. They
warrant further research to investigate how
to best reach treatment goals. Third, indi-
viduals with less favorable prognosis (e.g.,
thosewith a<5-year life expectancy)might
fall under theHbA1c<8% recommendation
(17) rather than 7%, indicating lower incre-
mental QALYs. However, our simulation co-
hort’s average age (62.8 years) is�18 years
less than the mean life expectancy in the
Netherlands (81 years as measured in 2020
[35]); therefore, we believe that our finding
is relevant. Finally, two clustering indicators,
namely C-peptide and fasting glucose, are
not captured in the UKPDS-OM2, which
might underestimate the discrimination
ability of data-driven subgroups. However,
C-peptide is found to be relatively stable
over time (1), and HbA1c, for which within-
patient reproducibility is superior to that of
fasting glucose (36), is included in the
UKPDS-OM2. Therefore, we believe that
our findingswill not be largely affected.

This study suggests several potential
directions for future research. We be-
lieve that cholesterol-lowering medicine
and weight control interventions warrant
further investigation for all individuals
with diabetes (37,38), with special atten-
tion regarding their impact in specific
subgroups (2,39). For example, as ex-
pected, treating to target of HbA1c alone

is less cost-effective for individuals with
SIRD than for most other subgroups,
given their already low HbA1c levels and
the possibility that complications are pri-
marily driven by hyperinsulinemia or in-
sulin resistance (40). Treatment options
targeting the latter are currently limited
(39); while lifestyle programs may help to
reduce insulin resistance through weight
loss, long-term sustainability is challeng-
ing (39). The high maximum annual price
(�$2,000) we found in the combined in-
tervention for SIRD suggests a significant
potential return on investment, which
could support the further development of
therapeutic options specifically targeting
them. Furthermore, future data-driven
clustering of diabetes subtypesmay bene-
fit from incorporating some elements of
the risk-driven approach, such as smoking
status, SBP, and total cholesterol, andmay
help to refine the current clustering and
indicate some etiologic pathways that
might have remained unnoticed at the
current clustering indicators.

In summary, stratification approaches
examined in this article were successful
in distinguishing among individuals with
type 2 diabetes in terms of lifetime
QALYs and costs. Both data-driven and
risk-driven subgroup stratification meth-
ods suggest that research and investment
in personalized care are attractive from
an individual and economic perspective.
Using a data-driven clustering approach,
we estimated that the RHAP-SIDD, RHAP-
SIRD, and RHAP-MOD subgroups would
potentially benefit in a cost-effective way
from treat-to-target strategies. However,
a more straightforward stratification us-
ing risk-driven cutoff values for risk fac-
tors did slightly better than data-driven
clustering in identifying priority groups of
individuals. With maximum prices of up
to $3,786 or £815 per individual per
year, strong economic incentives exist to
research and identify the best ways to
achieve established treatment targets, es-
pecially in high-risk individuals.

Acknowledgments. The authors thank Amber A.
Van Der Heijden, PhD, Amsterdam University Medi-
cal Center, for providing DCS data and helping with
various data-related questions; Sajad Emamipour,
MSc, University of Groningen, for helping with the
neuropathy and retinopathy data; Stefan R.A. Kon-
ings, MSc, University of Groningen, for helping with
coding; and Junfeng Wang, PhD, Utrecht University,
and Fang Li, MSc, University of Groningen, for scien-
tific advice. The authors thank the anonymous

diabetesjournals.org/care Li and Associates 1401

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/46/7/1395/725745/dc222170.pdf by U

N
IVER

SITEIT LEID
EN

 user on 21 June 2024

https://doi.org/10.2337/figshare.22619980
https://doi.org/10.2337/figshare.22619980
https://diabetesjournals.org/care


reviewers for insightful feedback, which contributed
a lot to enhancing the quality and clarity of the
article.
Funding. This project received funding from
the Innovative Medicines Initiative 2 Joint Un-
dertaking under grant 115881 (RHAPSODY). This
joint undertaking receives support from the Eu-
ropean Union’s Horizon 2020 (H2020 Health)
research and innovation program and the European
Federation of Pharmaceutical Industries and Associ-
ations. This work was supported by the Swiss State
Secretariat for Education, Research and Innovation
(SERI) under contract number 16.0097-2.

The opinions expressed and arguments used
herein do not necessarily reflect the official views
of these funding bodies. The funders had no role
in the study design, data collection, data analysis,
data interpretation, or writing of the manuscript.
Duality of Interest. No conflicts of interest
relevant to this article were reported.
Author Contributions. X.L., T.L.F., and J.L.
researched data, contributed to discussion,
and wrote, reviewed, and edited the manu-
script. A.v.G. and J.A. contributed to the discus-
sion and wrote, reviewed, and edited the
manuscript. R.C.S., J.W.J.B., L.M.H., E.R.P., and
P.J.M.E. contributed to the discussion and
reviewed and edited the manuscript. R.C.S.,
J.W.J.B., L.M.H., and P.J.M.E. contributed to DCS
data gathering and delivery. All authors contrib-
uted to the critical revision of the manuscript
for important intellectual content and approved
the final version of the manuscript. X.L. and
T.L.F. are the guarantors of this work and, as
such, had full access to all the data in the study
and take responsibility for the integrity of the
data and the accuracy of the data analysis.
Prior Presentation. Parts of this article were
presented as a poster presentation at the 82nd
Scientific Sessions of the American Diabetes As-
sociation in New Orleans, LA, 3–7 June 2022; as
an oral presentation at the European Health
Economics Association Conference 2022 in Oslo,
Norway, 5–8 July 2022; and at the Mount Hood
Diabetes Challenge Network Conference 2022 in
Malmo, Sweden, 24 September 2022.

References
1. Ahlqvist E, Storm P, K€ar€aj€am€aki A, et al. Novel
subgroups of adult-onset diabetes and their
association with outcomes: a data-driven cluster
analysis of six variables. Lancet Diabetes Endocrinol
2018;6:361–369
2. Dennis JM, Shields BM, Henley WE, Jones AG,
Hattersley AT. Disease progression and treatment
response in data-driven subgroups of type 2
diabetes compared with models based on simple
clinical features: an analysis using clinical trial
data. Lancet Diabetes Endocrinol 2019;7:442–451
3. Sarr�ıa-SantameraA,OrazumbekovaB,Maulenkul T,
Gaipov A, Atageldiyeva K. The iden-tification of
diabetes mellitus subtypes applying cluster analysis
techniques: a systematic review. Int J Environ Res
Public Health 2020;17:9523
4. Varghese JS, Narayan KMV. Ethnic differences
between Asians and non-Asians in clustering-
based phenotype classification of adult-onset
diabetes mellitus: a systematic narrative review.
Prim Care Diabetes 2022;16:853–856
5. Tanabe H, Masuzaki H, Shimabukuro M. Novel
strategies for glycaemic control and preventing
diabetic complications applying the clustering-based

classification of adult-onset diabetes mellitus: a
perspective. Diabetes Res Clin Pract 2021;180:
109067
6. Herder C, RodenM. A novel diabetes typology:
towards precision diabetology from pathogenesis
to treatment. Diabetologia 2022;65:1770–1781
7. Wesolowska-Andersen A, Brorsson CA, Bizzotto
R, et al., IMI DIRECT Consortium. Four groups of
type 2 diabetes contribute to the etiological and
clinical heterogeneity in newly diagnosed indi-
viduals: an IMI DIRECT study. Cell Rep Med 2022;
3:100477
8. Lugner M, Gudbj€ornsdottir S, Sattar N, et al.
Comparison between data-driven clusters and
models based on clinical features to predict
outcomes in type 2 diabetes: nationwide ob-
servational study. Diabetologia 2021;64:1973–
1981
9. van der Leeuw J, van Dieren S, Beulens JWJ,
et al. The validation of cardiovascular risk scores
for patients with type 2 diabetes mellitus. Heart
2015;101:222–229
10. Ahlqvist E, Prasad RB, Groop L. Subtypes of
type 2 diabetes determined from clinical para-
meters. Diabetes 2020;69:2086–2093
11. Schrader S, Perfilyev A, Ahlqvist E, et al.
Novel subgroups of type 2 diabetes display
different epigenetic patterns that associate with
future diabetic complications. Diabetes Care 2022;
45:1621–1630
12. Perk J, De Backer G, Gohlke H, et al.; Fifth
Joint Task Force of the European Society of
Cardiology and Other Societies on Cardiovascular
Disease Prevention in Clinical Practice; European
Association for Cardiovascular Prevention and Re-
habilitation. European guidelines on cardiovascular
disease prevention in clinical practice (version 2012):
the Fifth Joint Task Force of the European Society of
Cardiology and Other Societies on Cardiovascular
Disease Prevention in Clinical Practice (constituted by
representatives of nine societies and by invited
experts). Atherosclerosis 2012;223:1–68
13. Piepoli MF, Hoes AW, Agewall S, et al. 2016
European guidelines on cardiovascular disease
prevention in clinical practice: the Sixth Joint Task
Force of the European Society of Cardiology
and Other Societies on Cardiovascular Disease
Prevention in Clinical Practice (constituted by
representatives of 10 societies and by invited
experts): developed with the special contribution
of the European Association for Cardiovascular
Prevention & Rehabilitation (EACPR). Eur J Prev
Cardiol 2016;23:NP1–NP96
14. Mach F, Baigent C, Catapano AL, et al.; ESC
Committee for Practice Guidelines; ESC National
Cardiac Societies. 2019 ESC/EAS guidelines for the
management of dyslipidaemias: lipid modification
to reduce cardiovascular risk. Atherosclerosis 2020;
294:80–82
15. Conroy RM, Py€or€al€a K, Fitzgerald AP, et al.;
SCORE Project Group. Estimation of ten-year risk
of fatal cardiovascular disease in Europe: the
SCORE project. Eur Heart J 2003;24:987–1003
16. Cosentino F, Grant PJ, Aboyans V, et al.; ESC
Scientific Document Group. 2019 ESC guidelines
on diabetes, pre-diabetes, and cardiovascular
diseases developed in collaboration with the
EASD. Eur Heart J 2020;41:255–323
17. ElSayed NA, Aleppo G, Aroda VR, et al.;
American Diabetes Association. 6. Glycemic targets:
Standards of Care in Diabetes-2023. Diabetes Care
2023;46(Suppl. 1):S97–S110

18. Van Der Heijden AAWA, Rauh SP, Dekker JM,
et al. The Hoorn Diabetes Care System (DCS)
cohort. A prospective cohort of persons with
type 2 diabetes treated in primary care in the
Netherlands. BMJ Open 2017;7:e015599
19. Slieker RC, Donnelly LA, Fitipaldi H, et al.
Replication and cross-validation of type 2 diabetes
subtypes based on clinical variables: an IMI-
RHAPSODYstudy. Diabetologia 2021;64:1982–1989
20. Slieker RC, Donnelly LA, Fitipaldi H, et al.
Distinct molecular signatures of clinical clusters in
people with type 2 diabetes: an IMI-RHAPSODY
study. Diabetes 2021;70:2683–2693
21. Hayes AJ, Leal J, Gray AM, Holman RR, Clarke
PM. UKPDS outcomes model 2: a new version of
a model to simulate lifetime health outcomes of
patients with type 2 diabetes mellitus using data
from the 30 year United Kingdom Prospective
Diabetes Study: UKPDS 82. Diabetologia 2013;56:
1925–1933
22. Si L, Willis MS, Asseburg C, et al. Evaluating
the ability of economic models of diabetes to
simulate new cardiovascular outcomes trials: a
report on the Ninth Mount Hood Diabetes
Challenge.Value Health 2020;23:1163–1170
23. Pagano E, Konings SRA, Di Cuonzo D, et al.
Prediction of mortality and major cardiovascular
complications in type 2 diabetes: external validation
of UK Prospective Diabetes Study outcomes model
version 2 in two European observational cohorts.
Diabetes ObesMetab 2021;23:1084–1091
24. Sanders GD, Neumann PJ, Basu A, et al.
Recommendations for conduct, methodological
practices, and reporting of cost-effectiveness
analyses: Second Panel on Cost-Effectiveness in
Health andMedicine. JAMA 2016;316:1093–1103
25. National Institute for Health and Care Excellence.
Guide to themethods of technology appraisal 2013.
Accessed 26 April 2023. Available from https://www
.nice.org.uk/process/pmg9/resources/guide-to-the
-methods-of-technology-appraisal-2013-pdf
-2007975843781
26. Neumann PJ, Cohen JT, Weinstein MC.
Updating cost-effectiveness–the curious resilience
of the $50,000-per-QALY threshold. N Engl J Med
2014;371:796–797
27. Holman R, Hines G, Kennedy I, Stevens R,
Matthews D, Levy J. A calculator for HOMA.
Diabetologia 2004;47:A222
28. ElSayed NA, Aleppo G, Aroda VR, et al.;
American Diabetes Association. 8. Obesity and
weight management for the prevention and
treatment of type 2 diabetes: Standards of Care
in Diabetes-2023. Diabetes Care 2023;46(Suppl.
1):S128–S139
29. Mannucci E, MonamiM, Dicembrini I, Piselli A,
Porta M. Achieving HbA1c targets in clinical trials
and in the real world: a systematic review and
meta-analysis. J Endocrinol Invest 2014;37:477–495
30. Bramante CT, Lee CJ, Gudzune KA. Treat-
ment of obesity in patients with diabetes.
Diabetes Spectr 2017;30:237–243
31. Morieri ML, Avogaro A; the DARWIN-T2D
Network of the Italian Diabetes Society. Cholesterol
lowering therapies and achievement of targets for
primary and secondary cardiovascular prevention
in type 2 diabetes: unmet needs in a large
population of outpatients at specialist clinics. Car-
diovasc Diabetol 2020;19:190
32. Breuker C, Clement F, Mura T, et al. Non-
achievement of LDL-cholesterol targets in patients
with diabetes at very-high cardiovascular risk

1402 Value of Subgroups for Guiding Treatment Diabetes Care Volume 46, July 2023

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/46/7/1395/725745/dc222170.pdf by U

N
IVER

SITEIT LEID
EN

 user on 21 June 2024

https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781
https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-2007975843781


receiving statin treatment: incidence and risk
factors. Int J Cardiol 2018;268:195–199
33. Presta V, Figliuzzi I, Miceli F, et al.; EFFECTUS
Steering Committee. Achievement of low density
lipoprotein (LDL) cholesterol targets in primary and
secondary prevention: analysis of a large real practice
database in Italy. Atherosclerosis 2019;285:40–48
34. Van Gaal L, Scheen A.Weight management in
type 2 diabetes: current and emerging approaches
to treatment. Diabetes Care 2015;38:1161–1172
35. The World Bank. Life expectancy at birth,
total(years) – Netherlands. Accessed 23 December

2022. Available from https://data.worldbank.org/
indicator/SP.DYN.LE00.IN?locations=NL
36. Gonzalez A, Deng Y, Lane AN, et al. Impact of
mismatches in HbA1c vs glucose values on the
diagnostic classification of diabetes and prediabetes.
DiabetMed 2020;37:689–696
37. Athyros VG, Doumas M, Imprialos KP, et al.
Diabetes and lipid metabolism. Hormones (Athens)
2018;17:61–67
38. Magkos F, HjorthMF, Astrup A. Diet and exercise
in the prevention and treatment of type 2 diabetes
mellitus. Nat Rev Endocrinol 2020;16:545–555

39. Veelen A, Erazo-Tapia E, Oscarsson J, Schrauwen
P. Type 2 diabetes subgroups and potential
medication strategies in relation to effects on
insulin resistance and beta-cell function: a step
toward personalised diabetes treatment? Mol
Metab 2020;46:101158
40. Christensen DH, Nicolaisen SK, Ahlqvist E,
et al. Type 2 diabetes classification: a data-
driven cluster study of the Danish Centre for
Strategic Research in Type 2 Diabetes (DD2)
cohort. BMJ Open Diabetes Res Care 2022;10:
e002731

diabetesjournals.org/care Li and Associates 1403

D
ow

nloaded from
 http://diabetesjournals.org/care/article-pdf/46/7/1395/725745/dc222170.pdf by U

N
IVER

SITEIT LEID
EN

 user on 21 June 2024

https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=NL
https://data.worldbank.org/indicator/SP.DYN.LE00.IN?locations=NL
https://diabetesjournals.org/care



