80 research outputs found

    Front Neurol

    Get PDF
    Objective: Recent research suggests that sleep disorders or changes in sleep stages or EEG waveform precede over time the onset of the clinical signs of pathological cognitive impairment (e.g., Alzheimer's disease). The aim of this study was to identify biomarkers based on EEG power values and spindle characteristics during sleep that occur in the early stages of mild cognitive impairment (MCI) in older adults. Methods: This study was a case-control cross-sectional study with 1-year follow-up of cases. Patients with isolated subjective cognitive complaints (SCC) or MCI were recruited in the Bordeaux Memory Clinic (MEMENTO cohort). Cognitively normal controls were recruited. All participants were recorded with two successive polysomnography 1 year apart. Delta, theta, and sigma absolute spectral power and spindle characteristics (frequency, density, and amplitude) were analyzed from purified EEG during NREM and REM sleep periods during the entire second night. Results: Twenty-nine patients (8 males, age = 71 +/- 7 years) and 29 controls were recruited at T0. Logistic regression analyses demonstrated that age-related cognitive impairment were associated with a reduced delta power (odds ratio (OR) 0.072, P < 0.05), theta power (OR 0.018, P < 0.01), sigma power (OR 0.033, P < 0.05), and spindle maximal amplitude (OR 0.002, P < 0.05) during NREM sleep. Variables were adjusted on age, gender, body mass index, educational level, and medication use. Seventeen patients were evaluated at 1-year follow-up. Correlations showed that changes in self-reported sleep complaints, sleep consolidation, and spindle characteristics (spectral power, maximal amplitude, duration, and frequency) were associated with cognitive impairment (P < 0.05). Conclusion: A reduction in slow-wave, theta and sigma activities, and a modification in spindle characteristics during NREM sleep are associated very early with a greater risk of the occurrence of cognitive impairment. Poor sleep consolidation, lower amplitude, and faster frequency of spindles may be early sleep biomarkers of worsening cognitive decline in older adults

    Frailty and cerebrovascular disease: Concepts and clinical implications for stroke medicine.

    Get PDF
    Frailty is a distinctive health state in which the ability of older people to cope with acute stressors is compromised by an increased vulnerability brought by age-associated declines in physiological reserve and function across multiple organ systems. Although closely associated with age, multimorbidity, and disability, frailty is a discrete syndrome that is associated with poorer outcomes across a range of medical conditions. However, its role in cerebrovascular disease and stroke has received limited attention. The estimated rise in the prevalence of frailty associated with changing demographics over the coming decades makes it an important issue for stroke practitioners, cerebrovascular research, clinical service provision, and stroke survivors alike. This review will consider the concept and models of frailty, how frailty is common in cerebrovascular disease, the impact of frailty on stroke risk factors, acute treatments, and rehabilitation, and considerations for future applications in both cerebrovascular clinical and research settings

    Comparing different analysis methods for quantifying the MRI amide proton transfer (APT) effect in hyperacute stroke patients

    Get PDF
    Amide proton transfer (APT) imaging is a pH mapping method based on the chemical exchange saturation transfer phenomenon that has potential for penumbra identification following stroke. The majority of the literature thus far has focused on generating pH‐weighted contrast using magnetization transfer ratio asymmetry analysis instead of quantitative pH mapping. In this study, the widely used asymmetry analysis and a model‐based analysis were both assessed on APT data collected from healthy subjects (n = 2) and hyperacute stroke patients (n = 6, median imaging time after onset = 2 hours 59 minutes). It was found that the model‐based approach was able to quantify the APT effect with the lowest variation in grey and white matter (≀ 13.8 %) and the smallest average contrast between these two tissue types (3.48 %) in the healthy volunteers. The model‐based approach also performed quantitatively better than the other measures in the hyperacute stroke patient APT data, where the quantified APT effect in the infarct core was consistently lower than in the contralateral normal appearing tissue for all the patients recruited, with the group average of the quantified APT effect being 1.5 ± 0.3 % (infarct core) and 1.9 ± 0.4 % (contralateral). Based on the fitted parameters from the model‐based analysis and a previously published pH and amide proton exchange rate relationship, quantitative pH maps for hyperacute stroke patients were generated, for the first time, using APT imaging

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Creating Barriers to Reverse Engineering Using Topology Optimization

    No full text

    Imaging biomarkers in acute ischemic stroke trials: a systematic review.

    No full text
    Imaging biomarkers are increasingly used to provide a better understanding of the pathophysiology of acute ischemic stroke. However, this approach of routinely using imaging biomarkers to inform treatment decisions has yet to be translated into successful randomized trials. The aim of this study was to systematically review the use of imaging biomarkers in randomized controlled trials in patients with acute ischemic stroke, exploring the purposes for which the imaging biomarkers were used.We performed a systematic review of imaging biomarkers used in randomized controlled trials of acute ischemic stroke, in which a therapeutic intervention was trialed within 48 hours of symptom onset. Data bases searched included MEDLINE, EMBASE, strokecenter.org, and the Virtual International Stroke Trials Archive (1995-2014).Eighty-four studies met the criteria, of which 49 used imaging to select patients; 31, for subgroup analysis; and 49, as an outcome measure. Imaging biomarkers were broadly used for 8 purposes. There was marked heterogeneity in the definitions and uses of imaging biomarkers and significant publication bias among post hoc analyses.Imaging biomarkers offer the opportunity to refine the trial cohort by minimizing participant variation, to decrease sample size, and to personalize treatment approaches for those who stand to benefit most. However, within imaging modalities, there has been little consistency between stroke trials. Greater effort to prospectively use consistent imaging biomarkers should help improve the development of novel treatment strategies in acute stroke and improve comparison between studies

    Imaging biomarkers in acute ischemic stroke trials: a systematic review

    No full text
    Imaging biomarkers are increasingly used to provide a better understanding of the pathophysiology of acute ischemic stroke. However, this approach of routinely using imaging biomarkers to inform treatment decisions has yet to be translated into successful randomized trials. The aim of this study was to systematically review the use of imaging biomarkers in randomized controlled trials in patients with acute ischemic stroke, exploring the purposes for which the imaging biomarkers were used.We performed a systematic review of imaging biomarkers used in randomized controlled trials of acute ischemic stroke, in which a therapeutic intervention was trialed within 48 hours of symptom onset. Data bases searched included MEDLINE, EMBASE, strokecenter.org, and the Virtual International Stroke Trials Archive (1995-2014).Eighty-four studies met the criteria, of which 49 used imaging to select patients; 31, for subgroup analysis; and 49, as an outcome measure. Imaging biomarkers were broadly used for 8 purposes. There was marked heterogeneity in the definitions and uses of imaging biomarkers and significant publication bias among post hoc analyses.Imaging biomarkers offer the opportunity to refine the trial cohort by minimizing participant variation, to decrease sample size, and to personalize treatment approaches for those who stand to benefit most. However, within imaging modalities, there has been little consistency between stroke trials. Greater effort to prospectively use consistent imaging biomarkers should help improve the development of novel treatment strategies in acute stroke and improve comparison between studies
    • 

    corecore