1,976 research outputs found

    The Law on Abridgment of Copyrighted Literary Material

    Get PDF

    Admissibility of Third Party Confessions

    Get PDF

    Book Reviews

    Get PDF

    Assessing the Geomorphic Evolution and Hydrographic Changes Induced by Winter Storms along the Louisiana Coast

    Get PDF
    The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport

    Footprint of deepwater horizon blowout impact to deep-water coral communities

    Get PDF
    On April 20, 2010, the Deepwater Horizon (DWH) blowout occurred, releasing more oil than any accidental spill in history. Oil release continued for 87 d and much of the oil and gas remained in, or returned to, the deep sea. A coral community significantly impacted by the spill was discovered in late 2010 at 1,370 m depth. Here we describe the discovery of five previously unknown coral communities near the Macondo wellhead and show that at least two additional coral communities were impacted by the spill. Although the oil-containing flocullent material that was present on corals when the first impacted community was discovered was largely gone, a characteristic patchy covering of hydrozoans on dead portions of the skeleton allowed recognition of impacted colonies at the more recently discovered sites. One of these communities was 6 km south of the Macondowellhead and over 90% of the corals present showed the characteristic signs of recent impact. The other community, 22 km southeast of the wellhead between 1,850 and 1,950 m depth, was more lightly impacted. However, the discovery of this site considerably extends the distance from Macondo and depth range of significant impact to benthic macrofaunal communities. We also show that most known deep-water coral communities in the Gulf of Mexico do not appear to have been acutely impacted by the spill, although two of the newly discovered communities near thewellhead apparently not impacted by the spill have been impacted by deep-sea fishing operations

    Properties of the Strange Axial Mesons in the Relativized Quark Model

    Get PDF
    We studied properties of the strange axial mesons in the relativized quark model. We calculated the K1K_1 decay constant in the quark model and showed how it can be used to extract the K1(3P1)−K1(1P1)K_1 (^3P_1) - K_1 (^1P_1) mixing angle (θK\theta_K) from the weak decay τ→K1ντ\tau \to K_1 \nu_\tau. The ratio BR(τ→ντK1(1270))/BR(τ→ντK1(1400))BR(\tau \to \nu_\tau K_1 (1270))/BR(\tau\to \nu_\tau K_1(1400)) is the most sensitive measurement and also the most reliable since the largest of the theoretical uncertainties factor out. However the current bounds extracted from the TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain −30o≲θK≲50o-30^o \lesssim \theta_K \lesssim 50^o at 68\% C.L. We also calculated the strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube breaking model and extracted a 3P1−1P1^3P_1 - ^1P_1 mixing angle of θK≃45o\theta_K \simeq 45^o. Our analysis also indicates that the heavy quark limit does not give a good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex file uses revtex version 3 and epsfig, 4 postcript figures are attached. The full postcript version with embedded figures is available at ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.
    • …
    corecore