657 research outputs found

    Spectral Curves are Transcendental

    Get PDF

    The Charge 2 Monopole via the ADHMN construction

    Get PDF

    Space-Time Foam From Non-Commutative Instantons

    Get PDF
    We show that a U(1) instanton on non-commutative R^4 corresponds to a supersymmetric non-singular U(1) gauge field on a commutative Kahler manifold X which is a blowup of C^2 at a finite number of points. For instanton charge k the manifold X can be viewed as a space-time foam. A direct connection with integrable systems of Calogero-Moser type is established. We also make some comments on the non-abelian case.Comment: harvmac, 22 pp; v.2, refs added, a section adde

    The Curve of Compactified 6D Gauge Theories and Integrable Systems

    Full text link
    We analyze the Seiberg-Witten curve of the six-dimensional N=(1,1) gauge theory compactified on a torus to four dimensions. The effective theory in four dimensions is a deformation of the N=2* theory. The curve is naturally holomorphically embedding in a slanted four-torus--actually an abelian surface--a set-up that is natural in Witten's M-theory construction of N=2 theories. We then show that the curve can be interpreted as the spectral curve of an integrable system which generalizes the N-body elliptic Calogero-Moser and Ruijsenaars-Schneider systems in that both the positions and momenta take values in compact spaces. It turns out that the resulting system is not simply doubly elliptic, rather the positions and momenta, as two-vectors, take values in the ambient abelian surface. We analyze the two-body system in some detail. The system we uncover provides a concrete realization of a Beauville-Mukai system based on an abelian surface rather than a K3 surface.Comment: 22 pages, JHEP3, 4 figures, improved readility of figures, added reference

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    • 

    corecore