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SPECTRAL CURVES ARE TRANSCENDENTAL

H.W. BRADEN

ABSTRACT. Some arithmetic properties of spectral curves are discussed: the spectral
curve, for example, of a charge n > 2 Euclidean BPS monopole is not defined over Q if
smooth.

1. INTRODUCTION

A fundamental ingredient of the modern theory of integrable systems is a curve, the
spectral curve, and the function theory of this curve enables (via the Baker-Akhiezer function,
for example) the solution of the system. Typically analytic properties of this curve are in
the fore: here we will focus on a less well-developed aspect, its arithmetic properties. We
will show that for an integrable system of interest the associated spectral curves are not
defined over Q, the transcendental of the title. This aspect is a manifestation of why it is
so difficult to construct specific examples of some systems. The result proven here depends
on a number of deep results across several mathematical disciplines and what is novel is
bringing them together. For a number theorist the transcendence of periods is familiar: this
paper provides a number of new examples where this is relevant. For an algebraic geometer,
defining a curve by properties of lines bundles over it is not new: we see here the arithmetic
consequences of this. To be concrete we will focus on a particular integrable system and
remark on other examples. Neither a detailed knowledge of this particular physical system
nor the arcane lore of integrable systems will be needed to understand this paper.

The integrable system in focus here is that associated with Nahm’s equations and BPS
monopoles on R3, a reduction of the anti-self-dual Yang-Mills equations [1]; for simplicity
we will focus only on the case where the gauge group is SU(2). Some years ago Hitchin
[10] gave a description of the regular solutions to this system in terms of a spectral curve
C C TP! subject to constraints. (These constraints will be reviewed later in the paper.)
Although the mathematics associated with these equations has proven remarkably rich, for
example the moduli space of solutions may be given a hyperkéhler structure [1], the number
of spectral curves that can be explicitly written down are few. Table 1 gives the list of those
constructed over a period of some 35 years (see [11][Ch. 8] for references). Here n and ( are
the fibre coordinate and affine base coordinate of TPP! and the degree of 7 is the “charge”of
the monopole. For these introductory comments let us focus on the charge 2 BPS monopole
and return to the others later in the text. Here we have a one parameter family of solutions

K (k)
4
where K (k) is the complete elliptic integral with elliptic modulus k. The scalings of 7 and
¢ here are fixed by the constraints we have mentioned. With these normalisations this
curve is not expressible over Q: for if k¥ ¢ Q then at least one of k K (k) or K(k) must
be transcendental; finally a theorem of Schneider says that if k is algebraic, then K (k) is

transcendental. We say the curve is transcendental. Our goal is to establish

(1.1) 0=n%+ (¢*+2(k* = K +1),

Theorem 1.1. Let C be a smooth spectral curve of a charge n > 2 Euclidean BPS monopole.
Then C is not defined over Q.

We may for the purposes of this introduction understand a curve C to be defined over a
number field as one that can be described by the completion of a curve in C? defined by
a polynomial with algebraic coefficients. We will return to this point later but note here
that the transformation 7 = 2n/K (k) of (1.1) (a C-isomorphism that preserves the period
matrix of the curve) yields (for k € Q) a curve definable over Q yet that is not the spectral
curve of a monopole. The theorem is a consequence of work of Wiistholz on the vanishing or
transcendence of certain periods and the work of a number of authors in developing Hitchin’s
constraints. Simply put, the integrable system requires certain periods to be integral, but
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g = g(a) by requiring a particular period
vanish on the quotient genus 2 curve

a = 0, Tetrahedral

TABLE 1. The known spectral curves

Waiistholz says this cannot be so. We first review the spectral curve and Hitchin’s constraints
sufficient to indicate their implications for certain periods and then prove the theorem. We
conclude with some examples. We remark that Hitchin’s construction of harmonic maps
from the torus into the three sphere also embodies transcendental constraints on a spectral

curve |

] (here two third kind differentials are required to have integral periods).
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2. THE MONOPOLE SPECTRAL CURVE AND HITCHIN’S CONSTRAINTS

As already noted, BPS magnetic monopoles describe a class of finite energy solutions to
a reduction of the anti-self-dual Yang-Mills equations [I, 10]. Assuming a static solution
(where the connection is independent of the ‘time’ coordinate) these partial differential
equations take the form

*F = DO,

where F' is the curvature of the connection A for gauge group G with Lie algebra g, ¢
is a Higgs field, % is the Hodge-x operator for R? (though other 3-manifolds may also be
considered). Suitable boundary conditions need to be specified so as to ensure finiteness of
the energy; these boundary conditions allow one to define the Higgs field over the 2-sphere
“at infinity” and the “charge” of the monopole is the first Chern class of this bundle. Two
approaches exist to the problem of constructing these solutions. Just as the self-duality
equations may be understood in terms of twistor theory, a reduction of this exists describing
monopoles, where mini-twistor space TP!, the space of lines in R?, plays the corresponding
role. The zero-curvature equation arising from the anti-self-dual Yang-Mills equations leads
to [D3—i®, Dz] = 0 and considering the operator Ds—i® (which depends holomorphically on
2). The collection of lines in R? for which this operator has square integrable solutions forms
acurve C C TP!. A second approach was discovered by Nahm in which the solutions to the
partial differential equations were constructed in terms of solutions to a set of matrix ODE’s
(“Nahm’s Equations”) and an associated (ordinary) differential operator built from these;
this is the Nahm correspondence. Nahm'’s equations may be viewed as an integrable system
and have a Lax pair formulation and corresponding spectral curve given by the vanishing
of a characteristic polynomial P(n, () = det(n — L(¢)) = 0. This spectral curve is precisely
the curve C arising from the mini-twistor viewpoint and the spectral parameter ¢ and 7 in
this approach are identified with coordinates of TP!. Constructing regular solutions from
both approaches becomes one of specifying C and it was Hitchin [10] who gave necessary
and sufficient algebro-geometric constraints on the spectral curve of this integrable system
to yield BPS monopoles. The work [4] has shown how one may reconstruct the gauge field
data in terms of the function theory of C.

The physical interpretation of the surface TP' embues a significance to these coordinates
of the spectral curve. Let ¢ be a coordinate on P! (the direction of the line above) and
(n,¢) — nd% € TP! be coordinates for TP!. The fact the tangent bundle is of degree 2
means that a section may expressed in terms of a quadratic polynomial; for example

n=(xe —1x1) — 225 — (22 +zx1)C2.

One can then relate spatial symmetries with fractional linear symmetries of (n,{). The
spectral curve C is then specified by the vanishing of the polynomial P(n, () where

P, Q) =n"+a(On" " +...+an(¢),  degas(¢) <2

This curve, which we will assume smooth, has genus (n — 1)2. We note that TP! has the
antiholomorphic involution ¢ : (1, () — (—=7/¢?, —1/¢) which reverses the orientation of lines.
We may cover 7 : TP' — P! by the two patches Z;{\071 corresponding to the pre-images of the
standard cover Uy ; of P'. Let £(m) the holomorphic line bundle on T'P' with transition
function go; = (™ exp (—An/(); setting £* := £*(0), then £*(m) = L*@7*O(m). Hitchin’s
constraints are then:

H1: C is real with respect to ¢,

H2: £? is trivial on C and £!(n — 1) is real,

H3: H(C,L3(n—2)) =0 for s € (0,2).
Here the parameter s describing the linear flow of Hitchin’s line bundles corresponds to the
‘time’ of the integrable systems evolution, this linear evolution being described by a straight
line in Jac(C). The third condition says that this real straight line does not intersect the
theta divisor for s € (0,2), while it does at s = 0,2. Only the first of these constraints
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is easily implemented. The reality conditions H1 mean a,({) = (—1)7(27"%(—%) and as a
consequence a,(() is given by 2r+1 (real) parameters. It is the difficulty of making effective
H2, 3 that makes the construction of monopoles so difficult.

Ercolani and Sinha [9] made the initial study of H2. The triviality of £? means that
there exists a nowhere-vanishing holomorphic section; in terms of our cover and transition
functions we have fo(n, () = exp{—21/¢} f1(n, () with f; holomorphic in U;. The logarithmic
differential of fy thus yields a meromorphic differential for which exp f,y dlog fo = 1 for all
~v € H{(Z,C), and the flow in the Jacobian is governed by the meromorphic differential

Yoo (P) = 5 log fo((P) 1w > mj 05 (P).
j=1

Here the w; are canonically a-normalized holomorphic differentials ( fak w; = 0ji) and we
add an appropriate linear combination so that fak Yo = 0. These observations, together
with the Riemann bilinear relations yield

Theorem 2.1 (Ercolani-Sinha Constraints [9, 13, 8]). The following are equivalent:
(1) L2 is trivial on C.

T
(2) 2U e A = U = ;- (fbl Yoor s by %o) = in+ $7m, where A is the period
lattice. \
(3) There exists a 1-cycle es = n - a+m - b such that every holomorphic differential

Q= [Bon" 2+ Bi1(On" > + ..+ Ba2(Q)] d¢/O,P
has period feﬁ Q = —20y. This 1-cycle satisfies L.e5 = —es.

A number of remarks are perhaps in order.

(1) Hitchin’s constraints do not require C to be irreducible and a number of the examples
of Table 1 are in fact reducible. These examples show that C is not defined over Q
here as well.

(2) One can say more about 2U: it is in fact a primitive vector in the period lattice. By
tensoring with a section of 7*O(n — 2)|¢ we obtain a map O(L®) — O(L*(n — 2))
and so the vanishing of H° (C, O(L*(n — 2))) also entails that H° (C, O(L?)) = 0 for
s € (0,2); this means that 2U is in a primitive vector.

(3) If A (respectively B) denotes the matrix of a- periods (respectively b-periods) for a
basis of holomorphic differentials this may be chosen so that (with w = (77"’2 / 877P) d¢
the final basis element) (n, m) '2 = —2(0,...,0,1). That is the Ercolani-Sinha
constraints reflect rational relations between the periods.

(4) It is possible for a curve to satisfy H2 and yet fail H3 as seen with

Theorem 2.2 (Braden-Enolski [3]). To each pair of relatively prime integers (n,m) =1 for
which (m + n)(m — 2n) < 0 we obtain a solution to the Ercolani-Sinha constraints for the
curve

n3+X(CG+bC3_1):O7 b7X€Ra
as follows. First we solve for t, where

on—m 2F1(%,%;17t)

2.1 = .
( ) m-+n 2F1(%,%,1,1*t)
1—2t b+ Vb%+4
Then b = St = + + . With a8 =t/(1 —t) then
Vi1 —1t) 2vb? +4
2 12
XS = —(nm) T S WRi(5 55 L),

V3 (1+ab)s 33



SPECTRAL CURVES ARE TRANSCENDENTAL 5

Provided we can solve (2.1) we then have a countable number of curves satisfying H1,2.
Now while proving (amongst others) the formula of Ramanujan,

2 _ 35 2 15mn(d)n (G
Am m=0 (ml)S (%)m ,
Berndt, Bhargava, and Garvan [3] introduced the following extension of a modular equation

of degree n: a modular equation of degree n and signature r (r = 2,3,4,6) is defined to be
a relation between «, 3 of the form

oF1(5, 5 51 —a)  oFi(5, 5511 - 6)

o 0 ryopr 0

SR, =i a) R, 1)

r’ r r? o r

This theory enables one to solve (2.1). (The resulting ¢ and b are algebraic and x transcen-
dental.) Apart from the case (n,m) = (1,0),(1,1) (with t = 1/2 £ 5v/3/18 and b = +5v/2)
when the curve exhibits tetrahedral symmetry it is believed no member of this family satis-
fies H3 and a conjecture exists [7] for the number of sections the family of line bundles has
for s € (0,2).

3. PROOF AND DISCUSSION OF THE THEOREM
Theorem 1.1 follows from Theorem 2.1 and a deep theorem of Wiistholz.

Theorem 3.1 (Wistholz [15]). Let X be a smooth quasi-projective variety over a number
field K possessing a K-rational point and w € H°(X, Qﬁ(/K) a closed holomorphic differential

on X Then fﬁ/w (v € Hi(X,Z)) are either zero or transcendental.

An exposition of this theorem may be found in [2]. This theorem yields many of the
classical transcendence results (see [2][§6.3]) including the theorem of Schneider, noted in
the introduction, that the periods of an elliptic integral with rational elliptic modulus is
transcendental.

To prove the theorem let us first recall that given a number field K and K — C we have
for a variety X over K the schemes

X Xgpec(x) Spec(C) —— X

| l

Spec(C) — Spec(K)

The morphism X' Xgpecx) Spec(C) — Spec(C) is called the base change of the morphism
X — Spec(K) and the fibre product X' Xgpec(x) Spec(C) — Spec(C) always exists. We say
a variety C over C is defined over a subfield K C C if there exists a variety X over K such
that

c=X X Spec(K) Spec((C).

Here we have an isomorphism or birational equivalence over C. Though birational transfor-
mations change periods and differentials, the period matrix of the curve is (modulo integral
symplectic transformations) fixed in the Siegel upper half plane. In the present setting pe-
riods are being specified and and so arbitrary birational transformations are not allowed.
The birational transformation of (1.1) noted in the introduction, whilst resulting in a curve
defined over Q, destroys the integrality of the period required for the monopoles regularity.
At root is that Hitchin’s conditions specify more than the curve, they also describe a fam-
ily of line bundles on the curve. (These line bundles enable one to reconstruct the gauge
field via the Atiyah-Ward ansatz used by HItchin.) This has been encoded by the very
concrete transition functions in the choice of coordinates describing the curve. With these
preliminary remarks we may now prove the theorem.
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Proof. Specialising to the case when Wiistholz’s variety X is our spectral curve suppose
C, and so the polynomial P(7,(), is defined over Q. We may let K be the a number field
that contains the coefficients of P and the roots of P(0,¢) = a,({); thus C contains a K-

rational point. Consider the holomorphic differential w = (77”_2 / %—1; d¢ (recall n > 2 in

the theorem). We are assuming C smooth and so the conditions of theorem 3.1 are satisfied,
thus the periods of w are either zero or transcendental. But this contradicts theorem 2.1
and so C cannot be defined over Q. Thus theorem 1.1 is established. O

4. EXAMPLES

The known spectral curves in Table 1 all exhibit symmetries; these simplify the problem.
Reference [5] shows how questions about the Ercolani-Sinha vector reduce to questions for
the quotient curve; the flows of the integrable system are also shown there to simplify using a
theorem of Fay and Accola. Examples 4-9 of Table 1 all exhibit a Platonic symmetry group
[12], which evidences itself in the Klein polynomials of the appropriate spectral curves; these
curves all quotient to an elliptic curve. The elliptic curves for the discrete monopole configu-
rations of examples 4-8 each yield a Beta function of rational arguments, the transcendence
of which is also a result Schneider. The transcendence of the one-parameter families 8, 9
both follow by a similar argument to that of the introduction using Scheider’s result on the
transcendence of the periods of the Weierstrass p-function for algebraic g2 3. Although the
examples 1, 2 (for n > 3), 6, 7 are for reducible curves and so outwith the theorem, they too
are transcendental. The final curve has C3 symmetry and quotients over a genus 2 curve
[6]. The transcendence of the periods here requires theorem (3.1); a genus 2-variant of the
AGM due to Richelot may be used for their computation.
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