56,442 research outputs found

    Keck IR Spectroscopy of WZ Sge: Detection of Molecular Emission from the Accretion Disk

    Full text link
    Time-resolved IR spectroscopy of WZ Sge was obtained using NIRSPEC on Keck II. We detect CO and H2_{\rm 2} emission from the accretion disk placing WZ Sge into a rarefied class of astronomical objects including YSOs and high luminosity early-type stars. During the eclipse phase, the molecular emission greatly weakens but no firm evidence for the secondary star is seen allowing new limits on its luminosity to be determined. The detection of molecular emission provides physical properties within the outer disk of T=3000K and NH_H>1010>10^{10} cm3^{-3}. Such a cool, dense region, not associated with areas of H I and He I emission, provides the first observational confirmation of predictions made by accretion disk models.Comment: 10 pages, 3 figures. Accepted for publication in ApJ Letter

    Finite pseudo orbit expansions for spectral quantities of quantum graphs

    Full text link
    We investigate spectral quantities of quantum graphs by expanding them as sums over pseudo orbits, sets of periodic orbits. Only a finite collection of pseudo orbits which are irreducible and where the total number of bonds is less than or equal to the number of bonds of the graph appear, analogous to a cut off at half the Heisenberg time. The calculation simplifies previous approaches to pseudo orbit expansions on graphs. We formulate coefficients of the characteristic polynomial and derive a secular equation in terms of the irreducible pseudo orbits. From the secular equation, whose roots provide the graph spectrum, the zeta function is derived using the argument principle. The spectral zeta function enables quantities, such as the spectral determinant and vacuum energy, to be obtained directly as finite expansions over the set of short irreducible pseudo orbits.Comment: 23 pages, 4 figures, typos corrected, references added, vacuum energy calculation expande

    The NuSTAR View of the Seyfert 2 Galaxy NGC 4388

    Get PDF
    We present analysis of NuSTAR X-ray observations in the 3-79 keV energy band of the Seyfert 2 galaxy NGC 4388, taken in 2013. The broadband sensitivity of NuSTAR, covering the Fe Kα\alpha line and Compton reflection hump, enables tight constraints to be placed on reflection features in AGN X-ray spectra, thereby providing insight into the geometry of the circumnuclear material. In this observation, we found the X-ray spectrum of NGC 4388 to be well described by a moderately absorbed power law with non-relativistic reflection. We fit the spectrum with phenomenological reflection models and a physical torus model, and find the source to be absorbed by Compton-thin material (NH=(6.5±0.8)×1023_{H} = (6.5\pm0.8)\times10^{23} cm2^{-2}) with a very weak Compton reflection hump (R << 0.09) and an exceptionally large Fe Kα\alpha line (EW =36853+56= 368^{+56}_{-53} eV) for a source with weak or no reflection. Calculations using a thin-shell approximation for the expected Fe Kα\alpha EW indicate that an Fe Kα\alpha line originating from Compton-thin material presents a possible explanation.Comment: 5 pages, 2 figures. Accepted for publication in Ap

    Development of a Miniature Electrostatic Accelerometer /MESA/ for low g applications Summary report

    Get PDF
    Design, fabrication, and testing of miniature digital electrostatic accelerometer for low gravity measurements in spac

    Conjugative transfer frequencies of mef(A)-containing Tn1207.3 to macrolide-susceptible Streptococcus pyogenes belonging to different emm types

    Get PDF
    The aim of this study was to examine the gene transfer potential of mef(A)-containing Tn120.3 to macrolide-susceptible Streptococcus pyogenes belonging to different emm types. Using the filter mating technique, Tn1207.3 was transferred by conjugation to 23 macrolide-susceptible recipients representing 11 emm types. PCR analysis confirmed the presence of the mef(A) gene and the comEC junction regions of the Tn1207.3 insertion in resultant transconjugants. Significant variation was found in the transfer frequency of Tn1207.3 to different Strep. pyogenes strains, and this phenomenon may contribute to the differences in mef(A) frequency observed among clinical isolates. Significance and Impact of the Study: The spread of antimicrobial resistance among pathogenic bacteria is an important problem, but the mechanisms of horizontal transfer between strains and species are often poorly understood. For instance, little is known on how macrolide resistance spreads between strains of the human pathogen Strep. pyogenes and why certain strains more commonly display resistance than others. Here, we show that Strep. pyogenes strains vary greatly in their ability to acquire a transposon encoding macrolide resistance by horizontal gene transfer in vitro. These data provide a novel insight into the transfer of antibiotic resistance between bacterial strains and offer an explanation for the differences in the frequency of resistance determinates and resistance seen among clinical isolates. © 2014 The Authors Letters in Applied Microbiology

    Latent Process Heterogeneity in Discounting Behavior

    Get PDF
    We show that observed choices in discounting experiments are consistent with roughly one-half of the subjects using exponential discounting and one-half using quasi-hyperbolic discounting. We characterize the latent data generating process using a mixture model which allows different subjects to behave consistently with each model. Our results have substantive implications for the assumptions made about discounting behavior, and also have significant methodological implications for the manner in which we evaluate alternative models when there may be complementary data generating processes.

    Stellar or Non-Stellar Light? Determining Near-Infrared Contamination in Low Mass X-ray Binaries

    Get PDF
    Low-mass X-ray binary (LMXB) systems are comprised of a low-mass, K or M dwarflike star orbiting a compact object. Stellar black hole masses and their distributions are important inputs for binary evolution and supernova models. Currently, the main limiting factor in determining accurate black hole masses in LMXBs is the uncertainty of the orbital inclination angle due to an unknown amount of contaminating light in the near infrared. If present, this light dilutes the ellipsoidal variations of the low-mass secondary star, and thus gives the appearance of a lower orbital inclination system. It has been generally thought that the near infrared ellipsoidal light curves of these systems were relatively uncontaminated and represented primarily the light from the low-mass secondary star; however, recent disk and jet models have thrust this thinking into question. We combine our data from the Spitzer Space Telescope with our ground-based optical and near infrared data for several LMXBs to characterize and derive the amount of light contaminating the near-infrared ellipsoidal variations of the low-mass secondary star
    corecore