51,938 research outputs found
Impact of supermassive black hole growth on star formation
Supermassive black holes are found at the centre of massive galaxies. During
the growth of these black holes they light up to become visible as active
galactic nuclei (AGN) and release extraordinary amounts of energy across the
electromagnetic spectrum. This energy is widely believed to regulate the rate
of star formation in the black holes' host galaxies via so-called "AGN
feedback". However, the details of how and when this occurs remains uncertain
from both an observational and theoretical perspective. I review some of the
observational results and discuss possible observational signatures of the
impact of super-massive black hole growth on star formation.Comment: Invited Review for Nature Astronomy - accepted for publication. 11
pages 6 figure
The potential of public participation geographic information systems in UK environmental planning: Appraisals by active publics
The paper draws on an empirical study of two workshops in which the issues that arise from the use of geographic information systems (GIS) as a planning tool in public participation settings were explored by local residents who take an active interest in local planning matters in their London borough. The paper demonstrates how issues concerned with the democratization of GIS and public participation GIS (PPGIS) informed the structure and conduct of the workshops and the qualitative analysis of the workshop discussions. Key themes raised by participants included: the potential of PPGIS as a means of extending knowledge networks; issues of data ownership and the responsiveness of data providers to public concerns; and the role that institutional norms and practices play in democratizing information availability and the transparency of the decision-making process. The paper concludes that the potential of PPGIS as a planning tool cannot be separated from public concerns about the legitimacy of the planning process or local government
Circulatory responses to hypoxia in experimental myocardial infarction
Hypoxia affecting circulatory responses in dogs, such as cardiac output, left ventricular dp/dt, and stroke volum
Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks
Canalization of genetic regulatory networks has been argued to be favored by
evolutionary processes due to the stability that it can confer to phenotype
expression. We explore whether a significant amount of canalization and partial
canalization can arise in purely random networks in the absence of evolutionary
pressures. We use a mapping of the Boolean functions in the Kauffman N-K model
for genetic regulatory networks onto a k-dimensional Ising hypercube to show
that the functions can be divided into different classes strictly due to
geometrical constraints. The classes can be counted and their properties
determined using results from group theory and isomer chemistry. We demonstrate
that partially canalized functions completely dominate all possible Boolean
functions, particularly for higher k. This indicates that partial canalization
is extremely common, even in randomly chosen networks, and has implications for
how much information can be obtained in experiments on native state genetic
regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.
Heisenberg exchange in magnetic monoxides
The superexchange intertacion in transition-metal oxides, proposed initially
by Anderson in 1950, is treated using contemporary tight-binding theory and
existing parameters. We find also a direct exchange for nearest-neighbor metal
ions, larger by a factor of order five than the superexchange. This direct
exchange arises from Vddm coupling, rather than overlap of atomic charge
densities, a small overlap exchange contribution which we also estimate. For
FeO and CoO there is also an important negative contribution, related to Stoner
ferromagnetism, from the partially filled minority-spin band which broadens
when ionic spins are aligned. The corresponding J1 and J2 parameters are
calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and
the Curie-Weiss temperatures, show appropriate trends, and give a reasonable
account of their volume dependences. For MnO the predicted value for the
magnetic susceptibility at the Neel temperature and the crystal distortion
arising from the antiferromagnetic transition were reasonably well given.
Application to CuO2 planes in the cuprates gives J=1220oK, compared to an
experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental
230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized
J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory
(1/28 revision
Matching concepts across HOL libraries
Many proof assistant libraries contain formalizations of the same
mathematical concepts. The concepts are often introduced (defined) in different
ways, but the properties that they have, and are in turn formalized, are the
same. For the basic concepts, like natural numbers, matching them between
libraries is often straightforward, because of mathematical naming conventions.
However, for more advanced concepts, finding similar formalizations in
different libraries is a non-trivial task even for an expert.
In this paper we investigate automatic discovery of similar concepts across
libraries of proof assistants. We propose an approach for normalizing
properties of concepts in formal libraries and a number of similarity measures.
We evaluate the approach on HOL based proof assistants HOL4, HOL Light and
Isabelle/HOL, discovering 398 pairs of isomorphic constants and types
Spectral determinants and zeta functions of Schr\"odinger operators on metric graphs
A derivation of the spectral determinant of the Schr\"odinger operator on a
metric graph is presented where the local matching conditions at the vertices
are of the general form classified according to the scheme of Kostrykin and
Schrader. To formulate the spectral determinant we first derive the spectral
zeta function of the Schr\"odinger operator using an appropriate secular
equation. The result obtained for the spectral determinant is along the lines
of the recent conjecture.Comment: 16 pages, 2 figure
Absorption in atomic wires
The transfer matrix formalism is implemented in the form of the multiple
collision technique to account for dissipative transmission processes by using
complex potentials in several models of atomic chains. The absorption term is
rigorously treated to recover unitarity for the non-hermitian hamiltonians. In
contrast to other models of parametrized scatterers we assemble explicit
potentials profiles in the form of delta arrays, Poschl-Teller holes and
complex Scarf potentials. The techniques developed provide analytical
expressions for the scattering and absorption probabilities of arbitrarily long
wires. The approach presented is suitable for modelling molecular aggregate
potentials and also supports new models of continuous disordered systems. The
results obtained also suggest the possibility of using these complex potentials
within disordered wires to study the loss of coherence in the electronic
localization regime due to phase-breaking inelastic processes.Comment: 14 pages, 15 figures. To appear in Phys. Rev.
- …