51,957 research outputs found
Automation of electromagnetic compatability (EMC) test facilities
Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures
Magnetic anomalies in east Pacific using MAGSAT data
Methods for solving problems encountered in separating the core field from the crustal field are summarized as well as those methods developed for inverting total magnetic field data to obtain source functions for oceanic areas. Accounting for magnetization contrasts and the magnetization values measured in rocks of marine origin are also discussed
The source of the intermediate wavelength component of the Earth's magnetic field
The intermediate wavelength component of the Earth's magnetic field has been well documented by observations made by MAGSAT. It has been shown that some significant fraction of this component is likely to be caused within the core of the Earth. Evidence for this comes from analysis of the intermediate wavelength component revealed by spherical harmonics between degrees 14 and 23, in which it is shown that it is unlikely that all of this signal is crustal. Firstly, there is no difference between average continental source strength and average oceanic source strength, which is unlikely to be the case if the anomalies reside within the crust, taking into account the very different nature and thickness of continental and oceanic crust. Secondly, there is almost no latitudinal variation in the source strength, which is puzzling if the sources are within the crust and have been formed by present or past magnetic fields with a factor of two difference in intensity between the equator and the poles. If however most of the sources for this field reside within the core, then these observations are not very surprising
Investigations of medium wavelength magnetic anomalies in the eastern Pacific using MAGSAT
Progress in study of the details of spherical harmonic representations of the Earth's magnetic field is reported. The first of the Investigator B quiet time tapes were received and determined to be error free
Heisenberg exchange in magnetic monoxides
The superexchange intertacion in transition-metal oxides, proposed initially
by Anderson in 1950, is treated using contemporary tight-binding theory and
existing parameters. We find also a direct exchange for nearest-neighbor metal
ions, larger by a factor of order five than the superexchange. This direct
exchange arises from Vddm coupling, rather than overlap of atomic charge
densities, a small overlap exchange contribution which we also estimate. For
FeO and CoO there is also an important negative contribution, related to Stoner
ferromagnetism, from the partially filled minority-spin band which broadens
when ionic spins are aligned. The corresponding J1 and J2 parameters are
calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and
the Curie-Weiss temperatures, show appropriate trends, and give a reasonable
account of their volume dependences. For MnO the predicted value for the
magnetic susceptibility at the Neel temperature and the crystal distortion
arising from the antiferromagnetic transition were reasonably well given.
Application to CuO2 planes in the cuprates gives J=1220oK, compared to an
experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental
230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized
J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory
(1/28 revision
Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks
Canalization of genetic regulatory networks has been argued to be favored by
evolutionary processes due to the stability that it can confer to phenotype
expression. We explore whether a significant amount of canalization and partial
canalization can arise in purely random networks in the absence of evolutionary
pressures. We use a mapping of the Boolean functions in the Kauffman N-K model
for genetic regulatory networks onto a k-dimensional Ising hypercube to show
that the functions can be divided into different classes strictly due to
geometrical constraints. The classes can be counted and their properties
determined using results from group theory and isomer chemistry. We demonstrate
that partially canalized functions completely dominate all possible Boolean
functions, particularly for higher k. This indicates that partial canalization
is extremely common, even in randomly chosen networks, and has implications for
how much information can be obtained in experiments on native state genetic
regulatory networks.Comment: 14 pages, 4 figures; version to appear in J. Phys.
Design and simulation of InGaAs/AlAsSb quantum-cascade lasers for short wavelength emission
The design and simulation of an In-0.53Ga-0.47As/Al-0.56As-0.44Sb quantum-cascade laser emitting in the near infrared is presented. Designed using a self-consistent rate equation solver coupled with an energy balance rate equation, the proposed laser has a calculated population inversion of ~20% at 77 K and sufficient gain to achieve room-temperature laser emission at λ ~2.8 µm. Threshold currents in the range 4–8 kA/cm2 are estimated as the temperature increases from 77 K to 300 K. The output characteristics of the proposed laser are compared to an existing λ ~3.1 µm In-0.53Ga-0.47As/Al-0.56As-0.44Sb quantum-cascade structure presented in the literature
A normalisation procedure for biaxial bias extension tests
Biaxial Bias Extension tests have been performed on a plain-weave carbon fibre engineering fabric. The test results have been normalised using both the upper and lower bound method proposed by Potluri et al. and also using a novel alternative normalisation method based on energy arguments. The normalised results from both methods are compared and discussed
Continental and oceanic crustal magnetization modelling
Inversion of magnetic data from the MAGSAT satellite, to arrive at intensities of magnetization of the Earth's crust, was performed by two different methods. The first method uses a spherical harmonic model of the magnetic field. The coefficients believed to represent sources in the Earth's crust can then be inverted to arrive at vertical dipole moments per unit area at the Earth's surface. The spherical harmonic models contain coefficients of degrees of harmonics up to 23. The dipole moment per unit area for a surface element can then be determined by summing the contribution for each individual degree of harmonic. The magnetic moments were calculated for continental and oceanic areas separately as well as over certain latitudinal segments. Of primary concern was to determine whether there are any differences between continental and oceanic areas. The second analysis with magnetization intensities was made using narrower ranges of degrees of harmonics, assuming that higher degrees are present in the core field signal
Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma
Numerous reports have been made of features, either in emission or
absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally
interpreted in the context of Galactic neutron star models as cyclotron line
emission and annihilation features, the recent demonstration that
the majority of GRBs lie at cosmological distances make these explanations
unlikely. In this letter, we adopt a relativistic fireball model for
cosmological GRBs in which dense, metal rich blobs or filaments of plasma are
entrained in the relativistic outflow. In the context of this model, we
investigate the conditions under which broadband features, similar to those
detected, can be observed. We find a limited region of parameter space capable
of reproducing the observed GRB spectra. Finally, we discuss possible
constraints further high-energy spectral observations could place on fireball
model parameters.Comment: Accepted for publication in Astrophysical Journal Letters Four pages,
2 figure
- …