1,981 research outputs found
Two Drosophila suppressors of cytokine signaling (SOCS) differentially regulate JAK and EGFR pathway activities
BACKGROUND: The Janus kinase (JAK) cascade is an essential and well-conserved pathway required to transduce signals for a variety of ligands in both vertebrates and invertebrates. While activation of the pathway is essential to many processes, mutations from mammals and Drosophila demonstrate that regulation is also critical. The SOCS (Suppressor Of Cytokine Signaling) proteins in mammals are regulators of the JAK pathway that participate in a negative feedback loop, as they are transcriptionally activated by JAK signaling. Examination of one Drosophila SOCS homologue, Socs36E, demonstrated that its expression is responsive to JAK pathway activity and it is capable of downregulating JAK signaling, similar to the well characterized mammalian SOCS. RESULTS: Based on sequence analysis of the Drosophila genome, there are three identifiable SOCS homologues in flies. All three are most similar to mammalian SOCS that have not been extensively characterized: Socs36E is most similar to mammalian SOCS5, while Socs44A and Socs16D are most similar to mammalian SOCS6 and 7. Although Socs44A is capable of repressing JAK activity in some tissues, its expression is not regulated by the pathway. Furthermore, Socs44A can enhance the activity of the EGFR/MAPK signaling cascade, in contrast to Socs36E. CONCLUSIONS: Two Drosophila SOCS proteins have some overlapping and some distinct capabilities. While Socs36E behaves similarly to the canonical vertebrate SOCS, Socs44A is not part of a JAK pathway negative feedback loop. Nonetheless, both SOCS regulate JAK and EGFR signaling pathways, albeit differently. The non-canonical properties of Socs44A may be representative of the class of less characterized vertebrate SOCS with which it shares greatest similarity
The influence of microbial physiology on biocatalyst activity and efficiency in the terminal hydroxylation of n-octane using Escherichia coli expressing the alkane hydroxylase, CYP153A6
Biocatalyst improvement through molecular and recombinant means should be complemented with efficient process design to facilitate process feasibility and improve process economics. This study focused on understanding the bioprocess limitations to identify factors that impact the expression of the terminal hydroxylase CYP153A6 and also influence the biocatalytic transformation of n–octane to 1-octanol using resting whole cells of recombinant E. coli expressing the CYP153A6 operon which includes the ferredoxin (Fdx) and the ferredoxin reductase (FdR). Results: Specific hydroxylation activity decreased with increasing protein expression showing that the concentration of active biocatalyst is not the sole determinant of optimum process efficiency. Process physiological conditions including the medium composition, temperature, glucose metabolism and product toxicity were investigated. A fed-batch system with intermittent glucose feeding was necessary to ease overflow metabolism and improve process efficiency while the introduction of a product sink (BEHP) was required to alleviate octanol toxicity. Resting cells cultivated on complex LB and glucose-based defined medium with similar CYP level (0.20 μmol gDCW -1) showed different biocatalyst activity and efficiency in the hydroxylation of octane over a period of 120 h. This was influenced by differing glucose uptake rate which is directly coupled to cofactor regeneration and cell energy in whole cell biocatalysis. The maximum activity and biocatalyst efficiency achieved presents a significant improvement in the use of CYP153A6 for alkane activation. This biocatalyst system shows potential to improve productivity if substrate transfer limitation across the cell membrane and enzyme stability can be addressed especially at higher temperature. Conclusion: This study emphasises that the overall process efficiency is primarily dependent on the interaction between the whole cell biocatalyst and bioprocess conditions
Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences
Using technology to deliver cancer follow-up : a systematic review
Peer reviewedPublisher PD
Presacral malakoplakia presenting as foot drop: a case report
Background:
Malakoplakia is a rare condition characterized by inflammatory masses with specific histological characteristics. These soft tissue masses can mimic tumors and tend to develop in association with chronic or recurrent infections, typically of the urinary tract. A specific defect in innate immunity has been described. In the absence of randomized controlled trials, management is based on an understanding of the biology and on case reports.
Case presentation:
Here we describe a case of presacral malakoplakia in a British Indian woman in her late 30s, presenting with complex unilateral foot drop. Four years earlier, she had suffered a protracted episode of intrapelvic sepsis following a caesarean delivery. Resection of her presacral soft tissue mass was not possible. She received empiric antibiotics, a cholinergic agonist, and ascorbic acid. She responded well to medical management both when first treated and following a recurrence of symptoms after completing an initial 8 months of therapy. Whole exome sequencing of the patient and her parents was undertaken but no clear causal variant was identified.
Conclusions:
Malakoplakia is uncommon but the diagnosis should be considered where soft tissue masses develop at the site of chronic or recurrent infections. Obtaining tissue for histological examination is key to making the diagnosis. This case suggests that surgical resection is not always needed to achieve a good clinical and radiological outcome
The Plant Diversity Sampling Design for The National Ecological Observatory Network
The National Ecological Observatory Network (NEON) is designed to facilitate an understanding of the impact of environmental change on ecological systems. Observations of plant diversity—responsive to changes in climate, disturbance, and land use, and ecologically linked to soil, biogeochemistry, and organisms—result in NEON data products that cross a range of organizational levels. Collections include samples of plant tissue to enable investigations of genetics, plot-based observations of incidence and cover of native and non-native species, observations of plant functional traits, archived vouchers of plants, and remote sensing airborne observations. Spatially integrating many ecological observations allows a description of the relationship of plant diversity to climate, land use, organisms, and substrates. Repeating the observations over decades and across the United States will iteratively improve our understanding of those relationships and allow for the testing of system-level hypotheses as well as the development of predictions of future conditions
Recommended from our members
No straight lines – young women’s perceptions of their mental health and wellbeing during and after pregnancy: a systematic review and meta-ethnography
Background: Young mothers face mental health challenges during and after pregnancy including increased rates of depression compared to older mothers. While the prevention of teenage pregnancy in countries such as the United States and the United Kingdom has been a focus for policy and research in recent decades, the need to understand young women’s own experiences has been highlighted. The aim of this meta-ethnography was to examine young women’s perceptions of their mental health and wellbeing during and after pregnancy to provide new understandings of those experiences.
Methods: A systematic review and meta-ethnographic synthesis of qualitative research was conducted. Seven databases were systematically searched and forward and backward searching conducted. Papers were included if they were from Organisation for Economic Co-operation and Development countries and explored mental health and wellbeing experiences of young mothers (age under 20 in pregnancy; under 25 at time of research) as a primary research question – or where evidence about mental health and wellbeing from participants was foregrounded. Nineteen papers were identified and the Critical Appraisal Skills Programme checklist for qualitative research used to appraise the evidence. Following the seven-step process of meta-ethnography, key constructs were examined within each study and then translated into one another.
Results: Seven translated themes were identified forming a new line of argument wherein mental health and wellbeing was analysed as relating to individual bodily experiences; tied into past and present relationships; underpinned by economic insecurity and entangled with feelings of societal surveillance. There were ‘no straight lines’ in young women’s experiences, which were more complex than dominant narratives around overcoming adversity suggest.
Conclusions: The synthesis concludes that health and social care professionals need to reflect on the operation of power and stigma in young women’s lives and its impact on wellbeing. It adds to understanding of young women’s mental health and wellbeing during and after pregnancy as located in physical and structural factors rather than individual capacities alone
Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders
Identification of disease-linked hyperactivating mutations in UBE3A through large-scale functional variant analysis
The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders
- …