61,544 research outputs found
Wire tomography in the H-1NF heliac for investigation of fine structure of magnetic islands
Electron beam wire tomography in the H-1NF heliac enables high resolution mapping of vacuum flux surfaces with minimal disruption of the plasma operations schedule. Recent experimental results have proven this technique to be a highly accurate and high resolution method for mapping vacuum magnetic islands. Islands of width as small as delta approximately 8 mm have been measured, providing estimates of the internal rotational transform of the island. Point-to-point comparison of the mapping results with computer tracing, in conjunction with an image warping technique, enables systematic exploration of magnetic islands and surfaces of interest. Recent development of a fast mapping technique significantly reduced the mapping time and made this technique suitable for mapping at higher magnetic fields. This article presents recent experimental results and associated techniques.with support from
the Australian Research Council Grant No. DP0344361
Progressive failure methodologies for predicting residual strength and life of laminated composites
Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented
Symmetry Analysis of Multiferroic Co_3TeO_6
A phenomenological explanation of the magnetoelectric behavior of Co_3TeO_6
is developed. We explain the second harmonic generation data and the magnetic
field induced spontaneous polarization in the magnetically ordered phase below
20K.Comment: Phys rev B Rapids, to appea
A solvable non-conservative model of Self-Organized Criticality
We present the first solvable non-conservative sandpile-like critical model
of Self-Organized Criticality (SOC), and thereby substantiate the suggestion by
Vespignani and Zapperi [A. Vespignani and S. Zapperi, Phys. Rev. E 57, 6345
(1998)] that a lack of conservation in the microscopic dynamics of an SOC-model
can be compensated by introducing an external drive and thereby re-establishing
criticality. The model shown is critical for all values of the conservation
parameter. The analytical derivation follows the lines of Broeker and
Grassberger [H.-M. Broeker and P. Grassberger, Phys. Rev. E 56, 3944 (1997)]
and is supported by numerical simulation. In the limit of vanishing
conservation the Random Neighbor Forest Fire Model (R-FFM) is recovered.Comment: 4 pages in RevTeX format (2 Figures) submitted to PR
Creep Evaluation of (Orthotic) Cast Materials During Simulated Clubfoot Correction
The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot that relies on weekly manipulations and cast applications. However, the material behavior of the cast in the Ponseti technique has not been investigated. The current study sought to characterize the ability of two standard casting materials to maintain the Ponseti corrected foot position by evaluating creep response. A dynamic cast testing device (DCTD) was built to simulate a typical pediatric clubfoot. Semi-rigid fiberglass and rigid fiberglass casting materials were applied to the device, and the rotational creep was measured at various constant torques. The movement was measured using a 3D motion capture system. A 2-way ANOVA was performed on the creep displacement data at a significance level of 0.05. Among cast materials, the rotational creep displacement was found to be significantly different (p-values ≪ 0.001). The most creep displacement occurs in the semi-rigid fiberglass (approximately 1.0 degrees), then the rigid fiberglass (approximately 0.4 degrees). There was no effect of torque magnitude on the creep displacement. All materials maintained the corrected position with minimal change in position over time
1H-NMR Study on the Magnetic Order in the Mixture of Two Spin Gap Systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3
The antiferromagnetic ordering in the solid-solution of the two spin-gap
systems (CH3)2CHNH3CuCl3 and (CH3)2CHNH3CuBr3 has been investigated by 1H-NMR.
The sample with the Cl-content ratio x=0.85 showed a clear splitting in spectra
below TN=13.5 K, where the spin-lattice relaxation rate T1-1 showed a diverging
behavior. The critical exponent of the temperature dependence of the hyperfine
field is found to be 0.33.Comment: 11pages, 4 figure
Opportunities for financing sustainable development using complementary local currencies
Financing building retrofit projects that contribute to climate change mitigation has always represented a significant barrier. With 28% of global emissions coming from existing buildings, it is of paramount importance to carry out retrofit measures that lead to significant reduction of these emissions. Whilst this is perfectly possible to achieve with current methods and current technology, there is no sufficient conventional finance to carry out zero carbon retrofit at scale required for climate change mitigation. The article introduces an alternative and sustainable business model that creates new opportunities for financing zero carbon retrofit of buildings. It demonstrates that the value of solar energy falling on roofs of buildings can become a driver for new local economic systems, and discusses the requirements for practical application.Peer reviewedFinal Published versio
HST Photometry for the Halo Stars in the Leo Elliptical NGC 3377
We have used the ACS camera on HST to obtain (V,I) photometry for 57,000
red-giant stars in the halo of the Leo elliptical NGC 3377. We use this sample
of stars to derive the metallicity distribution function (MDF) for its halo
field stars, and comment on its chemical evolution history compared with both
larger and smaller E galaxies. Our ACS/WFC field spans a radial range extending
from 4 to 18 kpc projected distance from the center of NGC 3377 and thus covers
a significant portion of this galaxy's halo. We find that the MDF is broad,
reaching a peak at [m/H] ~ -0.6. It may, in addition, have relatively few
stars more metal-rich than [m/H] = -0.3$, although interpretation of the
high-metallicity end of the MDF is limited by photometric completeness that
affects the detection of the reddest, most metal-rich stars. NGC 3377 appears
to have an enrichment history intermediate between those of normal dwarf
ellipticals and the much larger giants. As yet, we find no clear evidence that
the halo of NGC 3377 contains a significant population of ``young'' (< 3 Gy)
stars.Comment: 40 pages, 17 figure
- …