70,954 research outputs found
Ab initio quantum dynamics using coupled-cluster
The curse of dimensionality (COD) limits the current state-of-the-art {\it ab
initio} propagation methods for non-relativistic quantum mechanics to
relatively few particles. For stationary structure calculations, the
coupled-cluster (CC) method overcomes the COD in the sense that the method
scales polynomially with the number of particles while still being
size-consistent and extensive. We generalize the CC method to the time domain
while allowing the single-particle functions to vary in an adaptive fashion as
well, thereby creating a highly flexible, polynomially scaling approximation to
the time-dependent Schr\"odinger equation. The method inherits size-consistency
and extensivity from the CC method. The method is dubbed orbital-adaptive
time-dependent coupled-cluster (OATDCC), and is a hierarchy of approximations
to the now standard multi-configurational time-dependent Hartree method for
fermions. A numerical experiment is also given.Comment: 5 figure
Finite-size scaling in complex networks
A finite-size-scaling (FSS) theory is proposed for various models in complex
networks. In particular, we focus on the FSS exponent, which plays a crucial
role in analyzing numerical data for finite-size systems. Based on the
droplet-excitation (hyperscaling) argument, we conjecture the values of the FSS
exponents for the Ising model, the susceptible-infected-susceptible model, and
the contact process, all of which are confirmed reasonably well in numerical
simulations
Universality Class of One-Dimensional Directed Sandpile Models
A general n-state directed `sandpile' model is introduced. The stationary
properties of the n-state model are derived for n < infty, and analytical
arguments based on a central limit theorem show that the model belongs to the
universality class of the totally asymmetric Oslo model, with a crossover to
uncorrelated branching process behavior for small system sizes. Hence, the
central limit theorem allows us to identify the existence of a large
universality class of one-dimensional directed sandpile models.Comment: 4 pages, 2 figure
Branching process approach for Boolean bipartite networks of metabolic reactions
The branching process (BP) approach has been successful in explaining the
avalanche dynamics in complex networks. However, its applications are mainly
focused on unipartite networks, in which all nodes are of the same type. Here,
motivated by a need to understand avalanche dynamics in metabolic networks, we
extend the BP approach to a particular bipartite network composed of Boolean
AND and OR logic gates. We reduce the bipartite network into a unipartite
network by integrating out OR gates, and obtain the effective branching ratio
for the remaining AND gates. Then the standard BP approach is applied to the
reduced network, and the avalanche size distribution is obtained. We test the
BP results with simulations on the model networks and two microbial metabolic
networks, demonstrating the usefulness of the BP approach
Forcing anomalous scaling on demographic fluctuations
We discuss the conditions under which a population of anomalously diffusing
individuals can be characterized by demographic fluctuations that are
anomalously scaling themselves. Two examples are provided in the case of
individuals migrating by Gaussian diffusion, and by a sequence of L\'evy
flights.Comment: 5 pages 2 figure
Progressive failure methodologies for predicting residual strength and life of laminated composites
Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented
A Bootstrapping Approach for Generating Maximally Path-Entangled Photon States
We propose a bootstrapping approach to generation of maximally path-entangled
states of photons, so called ``NOON states''. Strong atom-light interaction of
cavity QED can be employed to generate NOON states with about 100 photons;
which can then be used to boost the existing experimental Kerr nonlinearities
based on quantum coherence effects to facilitate NOON generation with
arbitrarily large number of photons all within the current experimental state
of the art technology. We also offer an alternative scheme that uses an
atom-cavity dispersive interaction to obtain sufficiently high
Kerr-nonlinearity necessary for arbitrary NOON generation
Towards a Microscopic Model of Magnetoelectric Interactions in Ni3V2O8
We develop a microscopic magnetoelectric coupling in NiVO (NVO)
which gives rise to the trilinear phenomenological coupling used previously to
explain the phase transition in which magnetic and ferroelectric order
parameters appear simultaneously. Using combined neutron scattering
measurements and first-principles calculations of the phonons in NVO, we
determine eleven phonons which can induce the observed spontaneous
polarization. Among these eleven phonons, we find that a few of them can
actually induce a significant dipole moment. Using the calculated atomic
charges, we find that the required distortion to induce the observed dipole
moment is very small (~0.001 \AA) and therefore it would be very difficult to
observe the distortion by neutron-powder diffraction. Finally, we identify the
derivatives of the exchange tensor with respect to atomic displacements which
are needed for a microscopic model of a spin-phonon coupling in NVO and which
we hope will be obtained from a fundamental quantum calculation such as LDA+U.
We also analyze two toy models to illustrate that the Dzyaloskinskii-Moriya
interaction is very important for coexisting of magnetic and ferroelectric
order but it is not the only mechanism when the local site symmetry of the
system is low enough.Comment: 20 pages, 10 figure
- …
