We develop a microscopic magnetoelectric coupling in Ni3V2O8 (NVO)
which gives rise to the trilinear phenomenological coupling used previously to
explain the phase transition in which magnetic and ferroelectric order
parameters appear simultaneously. Using combined neutron scattering
measurements and first-principles calculations of the phonons in NVO, we
determine eleven phonons which can induce the observed spontaneous
polarization. Among these eleven phonons, we find that a few of them can
actually induce a significant dipole moment. Using the calculated atomic
charges, we find that the required distortion to induce the observed dipole
moment is very small (~0.001 \AA) and therefore it would be very difficult to
observe the distortion by neutron-powder diffraction. Finally, we identify the
derivatives of the exchange tensor with respect to atomic displacements which
are needed for a microscopic model of a spin-phonon coupling in NVO and which
we hope will be obtained from a fundamental quantum calculation such as LDA+U.
We also analyze two toy models to illustrate that the Dzyaloskinskii-Moriya
interaction is very important for coexisting of magnetic and ferroelectric
order but it is not the only mechanism when the local site symmetry of the
system is low enough.Comment: 20 pages, 10 figure