1,834 research outputs found

    Neighborhood disadvantage across the transition from adolescence to adulthood and risk of metabolic syndrome

    Get PDF
    This study investigates the association between neighborhood disadvantage from adolescence to young adulthood and metabolic syndrome using a life course epidemiology framework. Data from the United States-based National Longitudinal Study of Adolescent to Adult Health (n = 9500)and a structural equation modeling approach were used to test neighborhood disadvantage across adolescence, emerging adulthood, and young adulthood in relation to metabolic syndrome. Adolescent neighborhood disadvantage was directly associated with metabolic syndrome in young adulthood. Evidence supporting an indirect association between adolescent neighborhood disadvantage and adult metabolic syndrome was not supported. Efforts to improve cardiometabolic health may benefit from strategies earlier in life

    Missing energy in black hole production and decay at the Large Hadron Collider

    Full text link
    Black holes could be produced at the Large Hadron Collider in TeV-scale gravity scenarios. We discuss missing energy mechanisms in black hole production and decay in large extra-dimensional models. In particular, we examine how graviton emission into the bulk could give the black hole enough recoil to leave the brane. Such a perturbation would cause an abrupt termination in Hawking emission and result in large missing-energy signatures.Comment: addressed reviewer comments and updated reference

    Signatures of black holes at the LHC

    Get PDF
    Signatures of black hole events at CERN's Large Hadron Collider are discussed. Event simulations are carried out with the Fortran Monte Carlo generator CATFISH. Inelasticity effects, exact field emissivities, color and charge conservation, corrections to semiclassical black hole evaporation, gravitational energy loss at formation and possibility of a black hole remnant are included in the analysis.Comment: 13 pages, 7 figure

    Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force

    Get PDF
    We find the lateral projection of the Casimir force for a configuration of a sphere above a corrugated plate. This force tends to change the sphere position in the direction of a nearest corrugation maximum. The probability distribution describing different positions of a sphere above a corrugated plate is suggested which is fitted well with experimental data demonstrating the nontrivial boundary dependence of the Casimir force.Comment: 5 pages, 1 figur

    Temperature correction to the Casimir force in cryogenic range and anomalous skin effect

    Get PDF
    Temperature correction to the Casimir force is considered for real metals at low temperatures. With the temperature decrease the mean free path for electrons becomes larger than the field penetration depth. In this condition description of metals with the impedance of anomalous skin effect is shown to be more appropriate than with the permittivity. The effect is crucial for the temperature correction. It is demonstrated that in the zero frequency limit the reflection coefficients should coincide with those of ideal metal if we demand the entropy to be zero at T=0. All the other prescriptions discussed in the literature for the n=0n=0 term in the Lifshitz formula give negative entropy. It is shown that the temperature correction in the region of anomalous skin effect is not suppressed as it happens in the plasma model. This correction will be important in the future cryogenic measurements of the Casimir force.Comment: 12 pages, 2 figures, to be published in Phys. Rev.

    Violation of the Nernst heat theorem in the theory of thermal Casimir force between Drude metals

    Full text link
    We give a rigorous analytical derivation of low-temperature behavior of the Casimir entropy in the framework of the Lifshitz formula combined with the Drude dielectric function. An earlier result that the Casimir entropy at zero temperature is not equal to zero and depends on the parameters of the system is confirmed, i.e. the third law of thermodynamics (the Nernst heat theorem) is violated. We illustrate the resolution of this thermodynamical puzzle in the context of the surface impedance approach by several calculations of the thermal Casimir force and entropy for both real metals and dielectrics. Different representations for the impedances, which are equivalent for real photons, are discussed. Finally, we argue in favor of the Leontovich boundary condition which leads to results for the thermal Casimir force that are consistent with thermodynamics.Comment: 24 pages, 3 figures, accepted for publication in Phys. Rev.

    Thermal correction to the Casimir force, radiative heat transfer, and an experiment

    Full text link
    The low-temperature asymptotic expressions for the Casimir interaction between two real metals described by Leontovich surface impedance are obtained in the framework of thermal quantum field theory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude model attains at zero temperature a positive value which depends on the parameters of a system, i.e., the Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test, whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates. The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer predicted from this impedance is several times less than previous predictions due to different contributions from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz formula is discussed. It is concluded that new measurements of radiative heat transfer are required to find out the adequate description of a metal in the theory of electromagnetic fluctuations.Comment: 19 pages, 4 figures. svjour.cls is used, to appear in Eur. Phys. J.

    Mitochondrial function and oxygen supply in normal and in chronically ischemic muscle: A combined 31P magnetic resonance spectroscopy and near infrared spectroscopy study in vivo

    Get PDF
    AbstractPurpose: We used 31P magnetic resonance spectroscopy (MRS) and near-infrared spectroscopy (NIRS) as a means of quantifying abnormalities in calf muscle oxygenation and adenosine triphosphate (ATP) turnover in peripheral vascular disease (PVD). Methods: Eleven male patients with PVD (mean age, 65 years; range, 55-76 years) and nine male control subjects of similar age were observed in a case-control study in vascular outpatients. Inclusion criteria were more than 6 months' calf claudication (median, 1.5 years; range, 0.6-18 years); proven femoropopliteal or iliofemoral occlusive or stenotic disease; maximum treadmill walking distance (2 km/h, 10° gradient) of 50 to 230 m (mean, 112 m); ankle-brachial pressure index of 0.8 or less during exercise (mean, 0.47; range, 0.29-0.60). Exclusion criteria included diabetes mellitus, anemia, and magnet contraindications. Simultaneous 31P MRS and NIRS of lateral gastrocnemius was conducted during 2 to 4 minutes of voluntary 0.5 Hz isometric plantarflexion at 50% and 75% maximum voluntary contraction force (MVC), followed by 5 minutes recovery. Each subject was studied three times, and the results were combined. Results: Compared with control subjects, patients with PVD showed (1) normal muscle cross-sectional area, MVC, ATP turnover, and contractile efficiency (ATP turnover per force/area); (2) larger phosphocreatine (PCr) changes during exercise (ie, increased shortfall of oxidative ATP synthesis) and slower PCr recovery (47% ± 7% [mean ± SEM] decrease in functional capacity for oxidative ATP synthesis, P =.001); (3) faster deoxygenation during exercise and slower postexercise reoxygenation (59% ± 7% decrease in rate constant, P =.0009), despite reduced oxidative ATP synthesis; (4) correlation between PCr and NIRS recovery rate constants (P <.02); and (5) correlations between smaller walking distance, slower PCr recovery, and reduced MVC (P <.001). The precision of the key measurements (rate constants and contractile efficiency) was 12% to 18% interstudy and 30% to 40% intersubject. Conclusion: The primary lesion in oxygen supply dominates muscle metabolism. Reduced force-generation in patients who are affected more may protect muscle from metabolic stress. (J Vasc Surg 2001;34:1103-10.

    Brane Decay of a (4+n)-Dimensional Rotating Black Hole. III: spin-1/2 particles

    Get PDF
    In this work, we have continued the study of the Hawking radiation on the brane from a higher-dimensional rotating black hole by investigating the emission of fermionic modes. A comprehensive analysis is performed that leads to the particle, power and angular momentum emission rates, and sheds light on their dependence on fundamental parameters of the theory, such as the spacetime dimension and angular momentum of the black hole. In addition, the angular distribution of the emitted modes, in terms of the number of particles and energy, is thoroughly studied. Our results are valid for arbitrary values of the energy of the emitted particles, dimension of spacetime and angular momentum of the black hole, and complement previous results on the emission of brane-localised scalars and gauge bosons.Comment: Latex file, JHEP style, 34 pages, 16 figures Energy range in plots increased, minor changes, version published in JHE

    Surface-impedance approach solves problems with the thermal Casimir force between real metals

    Full text link
    The surface impedance approach to the description of the thermal Casimir effect in the case of real metals is elaborated starting from the free energy of oscillators. The Lifshitz formula expressed in terms of the dielectric permittivity depending only on frequency is shown to be inapplicable in the frequency region where a real current may arise leading to Joule heating of the metal. The standard concept of a fluctuating electromagnetic field on such frequencies meets difficulties when used as a model for the zero-point oscillations or thermal photons in the thermal equilibrium inside metals. Instead, the surface impedance permits not to consider the electromagnetic oscillations inside the metal but taking the realistic material properties into account by means of the effective boundary condition. An independent derivation of the Lifshitz-type formulas for the Casimir free energy and force between two metal plates is presented within the impedance approach. It is shown that they are free of the contradictions with thermodynamics which are specific to the usual Lifshitz formula for dielectrics in combination with the Drude model. We demonstrate that in the impedance approach the zero-frequency contribution is uniquely fixed by the form of impedance function and does not need any of the ad hoc prescriptions intensively discussed in the recent literature. As an example, the computations of the Casimir free energy between two gold plates are performed at different separations and temperatures. It is argued that the surface impedance approach lays a reliable framework for the future measurements of the thermal Casimir force.Comment: 21 pages, 3 figures, to appear in Phys. Rev.
    • …
    corecore