3,093 research outputs found

    Support vector recurrent neurofuzzy networks in modeling nonlinear systems with correlated noise

    Get PDF
    Good generalization results are obtained from neurofuzzy networks if its structure is suitably chosen. To select the structure of neurofuzzy networks, the authors proposed a construction algorithm that is derived from the Support Vector Regression. However, the modeling errors are assumed to be uncorrelated. In this paper, systems with correlated modeling errors are considered. The correlated noise is modeled separately by a recurrent network. The overall network is referred to as the support vector recurrent neurofuzzy networks. The prediction error method is used to train the networks, where the derivatives are computed by a sensitivity model. The performance of proposed networks is illustrated by an example involving a nonlinear dynamic system corrupted by correlated noise.published_or_final_versio

    Factorization and resummation of s-channel single top quark production

    Full text link
    In this paper we study the factorization and resummation of s-channel single top quark production in the Standard Model at both the Tevatron and the LHC. We show that the production cross section in the threshold limit can be factorized into a convolution of hard function, soft function and jet function via soft-collinear-effective-theory (SCET), and resummation can be performed using renormalization group equation in the momentum space resummation formalism. We find that in general, the resummation effects enhance the Next-to-Leading-Order (NLO) cross sections by about 33%-5% at both the Tevatron and the LHC, and significantly reduce the factorization scale dependence of the total cross section at the Tevatron, while at the LHC we find that the factorization scale dependence has not been improved, compared with the NLO results.Comment: 29 pages, 7 figures; version published in JHE

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Learning democracy in social work

    Get PDF
    In this contribution, we discuss the role of social work in processes of democracy. A key question in this discussion concerns the meaning of ‘the social’ in social work. This question has often been answered in a self-referential way, referring to a methodological identity of social work. This defines the educational role of social work as socialisation (be it socialisation into obedience or into an empowered citizen). However, the idea of democracy as ‘ongoing experiment’ and ‘beyond order’ challenges this methodological identity of social work. From the perspective of democracy as an ‘ongoing experiment’, the social is to be regarded as a platform for dissensus, for ongoing discussions on the relation between private and public issues in the light of human rights and social justice. Hence, the identity of social work cannot be defined in a methodological way; social work is a complex of (institutionalized) welfare practices, to be studied on their underlying views on the ‘social’ as a political and educational concept, and on the way they influence the situation of children, young people and adults in society

    Morphological evidence for geologically young thaw of ice on Mars: a review of recent studies using high-resolution imaging data

    Get PDF
    Liquid water is generally only meta-stable on Mars today; it quickly freezes, evaporates or boils in the cold, dry, thin atmosphere (surface pressure is about 200 times lower than on Earth). Nevertheless, there is morphological evidence that surface water was extensive in more ancient times, including the Noachian Epoch (~4.1 Ga to ~3.7 Ga bp), when large lakes existed and river-like channel networks were incised, and early in the Hesperian Epoch (~3.7 Ga to ~2.9 Ga bp), when megafloods carved enormous channels and smaller fluvial networks developed in association with crater-lakes. However, by the Amazonian Epoch (~3.0 Ga to present), most surface morphogenesis associated with liquid water had ceased, with long periods of water sequestration as ice in the near-surface and polar regions. However, inferences from observations using imaging data with sub-metre pixel sizes indicate that periglacial landscapes, involving morphogenesis associated with ground-ice and/or surface-ice thaw and liquid flows, has been active within the last few million years. In this paper, three such landform assemblages are described: a high-latitude assemblage comprising features interpreted to be sorted clastic stripes, circles and polygons, non-sorted polygonally patterned ground, fluvial gullies, and solifluction lobes; a mid-latitude assemblage comprising gullies, patterned ground, debris-covered glaciers and hillslope stripes; and an equatorial assemblage of linked basins, patterned ground, possible pingos, and channel-and-scarp features interpreted to be retrogressive thaw-slumps. Hypotheses to explain these observations are explored, including recent climate change, and hydrated minerals in the regolith ‘thawing’ to form liquid brines at very low temperatures. The use of terrestrial analogue field sites is also discussed

    Bridging the data gaps in the epidemiology of hepatitis C virus infection in Malaysia using multi-parameter evidence synthesis

    Get PDF
    BACKGROUND: Collecting adequate information on key epidemiological indicators is a prerequisite to informing a public health response to reduce the impact of hepatitis C virus (HCV) infection in Malaysia. Our goal was to overcome the acute data shortage typical of low/middle income countries using statistical modelling to estimate the national HCV prevalence and the distribution over transmission pathways as of the end of 2009. METHODS: Multi-parameter evidence synthesis methods were applied to combine all available relevant data sources - both direct and indirect - that inform the epidemiological parameters of interest. RESULTS: An estimated 454,000 (95% credible interval [CrI]: 392,000 to 535,000) HCV antibody-positive individuals were living in Malaysia in 2009; this represents 2.5% (95% CrI: 2.2-3.0%) of the population aged 15-64 years. Among males of Malay ethnicity, for 77% (95% CrI: 69-85%) the route of probable transmission was active or a previous history of injecting drugs. The corresponding proportions were smaller for male Chinese and Indian/other ethnic groups (40% and 71%, respectively). The estimated prevalence in females of all ethnicities was 1% (95% CrI: 0.6 to 1.4%); 92% (95% CrI: 88 to 95%) of infections were attributable to non-drug injecting routes of transmission. CONCLUSIONS: The prevalent number of persons living with HCV infection in Malaysia is estimated to be very high. Low/middle income countries often lack a comprehensive evidence base; however, evidence synthesis methods can assist in filling the data gaps required for the development of effective policy to address the future public health and economic burden due to HCV. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-014-0564-6) contains supplementary material, which is available to authorized users

    Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements

    Full text link
    Corrections to Newton's gravitational law inspired by extra dimensional physics and by the exchange of light and massless elementary particles between the atoms of two macrobodies are considered. These corrections can be described by the potentials of Yukawa-type and by the power-type potentials with different powers. The strongest up to date constraints on the corrections to Newton's gravitational law are reviewed following from the E\"{o}tvos- and Cavendish-type experiments and from the measurements of the Casimir and van der Waals force. We show that the recent measurements of the Casimir force gave the possibility to strengthen the previously known constraints on the constants of hypothetical interactions up to several thousand times in a wide interaction range. Further strengthening is expected in near future that makes Casimir force measurements a prospective test for the predictions of fundamental physical theories.Comment: 20 pages, crckbked.cls is used, to be published in: Proceedings of the 18th Course of the School on Cosmology and Gravitation: The Gravitational Constant. Generalized Gravitational Theories and Experiments (30 April- 10 May 2003, Erice). Ed. by G. T. Gillies, V. N. Melnikov and V. de Sabbata, 20pp. (Kluwer, in print, 2003

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB

    Group formation under limited resources: narrow basin of equality

    Get PDF
    The formation of groups in competition and the aggressive interactions between them are ubiquitous phenomena in society. These include student activities in the classroom, election races between political parties, and intensifying trade wars between countries. Why do individuals form themselves into groups? What is the optimal size of groups? And how does the group size distribution affect resource allocations? These questions have been the subjects of intense research in economics, political science, sociology, and ethology. In this study, we explore the group-size effects on the formation of groups and resource allocations from an economic standpoint. While being in a large group is generally advantageous in competition, an increase in the management costs would set an upper bound to the individual benefit of members. Under such counteracting size effects, we consider the dynamics of group formation in which people seek a conservative measure to reduce their possible maximum loss. We are especially interested in the effects of group size on social inequalities at both group and individual level in resource allocation. Our findings show that the low positive size-effect and the high negative size-effect result in different types of social inequalities. We conclude, from the relation between the inequality measures and group distributions predicted within the model, that overall social equality only can be achieved within a narrow region where two counteracting size-effects are balanced
    corecore