2,280 research outputs found
Effect of 50 Hz Electromagnetic Fields on the Induction of Heat-Shock Protein Gene Expression in Human Leukocytes
Although evidence is controversial, exposure to environmental power-frequency magnetic fields is of public concern. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. In this study, we determined whether exposure to power-frequency magnetic fields in the range 0–100 μT rms either alone or concomitant with mild heating induced heat-shock protein gene expression in human leukocytes, and we compared this response to that induced by heat alone. Samples of human peripheral blood were simultaneously exposed to a range of magnetic-field amplitudes using a regimen that was designed to allow field effects to be distinguished from possible artifacts due to the position of the samples in the exposure system. Power-frequency magnetic-field exposure for 4 h at 37°C had no detectable effect on expression of the genes encoding HSP27, HSP70A or HSP70B, as determined using reverse transcriptase-PCR, whereas 2 h at 42°C elicited 10-, 5- and 12-fold increases, respectively, in the expression of these genes. Gene expression in cells exposed to power-frequency magnetic fields at 40°C was not increased compared to cells incubated at 40°C without field exposure. These findings and the extant literature suggest that power-frequency electromagnetic fields are not a universal stressor, in contrast to physical agents such as heat
Photon-photon correlations and entanglement in doped photonic crystals
We consider a photonic crystal (PC) doped with four-level atoms whose
intermediate transition is coupled near-resonantly with a photonic band-gap
edge. We show that two photons, each coupled to a different atomic transition
in such atoms, can manifest strong phase or amplitude correlations: One photon
can induce a large phase shift on the other photon or trigger its absorption
and thus operate as an ultrasensitive nonlinear photon-switch. These features
allow the creation of entangled two-photon states and have unique advantages
over previously considered media: (i) no control lasers are needed; (ii) the
system parameters can be chosen to cause full two-photon entanglement via
absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference
Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency
We propose an optical double-cavity resonator whose response to a signal is
similar to that of an Electromagnetically Induced Transparency (EIT) medium. A
combination of such a device with a four-level EIT medium can serve for
achieving large cross-Kerr modulation of a probe field by a signal field. This
would offer the possibility of building a quantum logic gate based on photonic
qubits. We discuss the technical requirements that are necessary for realizing
a probe-photon phase shift of Pi caused by a single-photon signal. The main
difficulty is the requirement of an ultra-low reflectivity beamsplitter and to
operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor
changes in discussion of experimental conditions
Generalized contact process on random environments
Spreading from a seed is studied by Monte Carlo simulation on a square
lattice with two types of sites affecting the rates of birth and death. These
systems exhibit a critical transition between survival and extinction. For
time- dependent background, this transition is equivalent to those found in
homogeneous systems (i.e. to directed percolation). For frozen backgrounds, the
appearance of Griffiths phase prevents the accurate analysis of this
transition. For long times in the subcritical region, spreading remains
localized in compact (rather than ramified) patches, and the average number of
occupied sites increases logarithmically in the surviving trials.Comment: 6 pages, 7 figure
Supersymmetric CP Violation in in Minimal Supergravity Model
Direct CP asymmetries and the CP violating normal polarization of lepton in
inclusive decay B \to X_s l^+ l^- are investigated in minimal supergravity
model with CP violating phases. The contributions coming from exchanging
neutral Higgs bosons are included. It is shown that the direct CP violation in
branching ratio, A_{CP}^1, is of {\cal{O}}(10^{-3}) for l=e, \mu, \tau. The CP
violating normal polarization for l=\mu can reach 0.5 percent when tan\beta is
large (say, 36). For l=\tau and in the case of large \tan\beta, the direct CP
violation in backward-forward asymmetry, A_{CP}^2, can reach one percent, the
normal polarization of \tau can be as large as a few percent, and both are
sensitive to the two CP violating phases, \phi_\mu and \phi_{A_0}, and
consequently it could be possible to observe them (in particular, the normal
polarization of \tau) in the future B factories.Comment: 14 pages, latex, 5 figure
Data to identify key drivers of animal growth and carcass quality for temperate lowland sheep production systems
With the growing demand for animal-sourced foods and a serious concern over climate impacts associated with livestock farming, the sheep industry worldwide faces the formidable challenge of increasing the overall product supply while improving its resource use efficiency. As an evidence base for research to identify key drivers behind animal growth and carcass quality, longitudinal matched data of 741 ewes and 2978 lambs were collected at the North Wyke Farm Platform, a farm-scale grazing trial in Devon, UK, between 2011 and 2019. A subset of these data was subsequently analysed in a study to assess the feasibility of using a lamb's early-life liveweight as a predictor of carcass quality [1]. The data also have the potential to offer insight into key performance indicators (KPIs) for the sheep industry, or what variables farmers should measure and target to increase profitability
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
Modern clinician-initiated clinical trials to determine optimal therapy for multidrug-resistant gram-negative infections
Treatment options for multidrug-resistant (MDR) gram-negative infection are growing. However, postregistration, pragmatic, and clinician-led clinical trials in this field are few, recruit small sample sizes, and experience deficiencies in design and operations. MDR gram-negative therapeutic trials are often inefficient, only evaluating a single antibiotic or strategy at a time. Novel clinical trial designs offer potential solutions by attempting to obtain clinically meaningful conclusions at the end or during a trial, for many treatment strategies, simultaneously. An integrated, consensus approach to MDR gram-negative infection trial design is crucial
- …