607 research outputs found

    Landau Expansion for the Kugel-Khomskii t2gt_{2g} Hamiltonian

    Get PDF
    The Kugel-Khomskii (KK) Hamiltonian for the titanates describes spin and orbital superexchange interactions between d1d^1 ions in an ideal perovskite structure in which the three t2gt_{2g} orbitals are degenerate in energy and electron hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-field theory in which each site, ii, has its own n×nn \times n single-site density matrix \rhov(i), where nn, the number of allowed single-particle states, is 6 (3 orbital times 2 spin states). The variational free energy from this 35 parameter density matrix is shown to exhibit the unusual symmetries noted previously which lead to a wavevector-dependent susceptibility for spins in α\alpha orbitals which is dispersionless in the qαq_\alpha-direction. Thus, for the cubic KK model itself, mean-field theory does not provide wavevector `selection', in agreement with rigorous symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions are introduced, the susceptibility has dispersion in all directions in q{\bf q}-space, but the resulting antiferromagnetic mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments. When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect of a Hund's rule coupling of sufficient strength is to produce a state with orbital order.Comment: 20 pages, 5 figures, submitted to Phys. Rev. B (2003

    Hidden Symmetries and their Consequences in t2gt_{2g} Cubic Perovskites

    Full text link
    The five-band Hubbard model for a dd band with one electron per site is a model which has very interesting properties when the relevant ions are located at sites with high (e. g. cubic) symmetry. In that case, if the crystal field splitting is large one may consider excitations confined to the lowest threefold degenerate t2gt_{2g} orbital states. When the electron hopping matrix element (tt) is much smaller than the on-site Coulomb interaction energy (UU), the Hubbard model can be mapped onto the well-known effective Hamiltonian (at order t2/Ut^{2}/U) derived by Kugel and Khomskii (KK). Recently we have shown that the KK Hamiltonian does not support long range spin order at any nonzero temperature due to several novel hidden symmetries that it possesses. Here we extend our theory to show that these symmetries also apply to the underlying three-band Hubbard model. Using these symmetries we develop a rigorous Mermin-Wagner construction, which shows that the three-band Hubbard model does not support spontaneous long-range spin order at any nonzero temperature and at any order in t/Ut/U -- despite the three-dimensional lattice structure. Introduction of spin-orbit coupling does allow spin ordering, but even then the excitation spectrum is gapless due to a subtle continuous symmetry. Finally we showed that these hidden symmetries dramatically simplify the numerical exact diagonalization studies of finite clusters.Comment: 26 pages, 3 figures, 520 KB, submitted Phys. Rev.

    Hubbard model versus t-J model: The one-particle spectrum

    Get PDF
    The origin of the apparent discrepancies between the one-particle spectra of the Hubbard and t-J models is revealed: Wavefunction corrections, in addition to the three-site terms, should supplement the bare t-J. In this way a quantitative agreement between the two models is obtained, even for the intermediate-UU values appropriate for the high-Tc cuprate superconductors. Numerical results for clusters of up to 20 sites are presented. The momentum dependence of the observed intensities in the photoemission spectra of Sr2CuO2Cl2 are well described by this complete strong-coupling approach.Comment: 4 two-column RevTeX pages, including 4 Postscript figures. Uses epsf. Accepted for publication in Physical Review B, Rapid Communicatio

    A hidden Goldstone mechanism in the Kagom\'e lattice antiferromagnet

    Full text link
    In this paper, we study the phases of the Heisenberg model on the \kagome lattice with antiferromagnetic nearest neighbour coupling J1J_1 and ferromagnetic next neighbour coupling J2J_2. Analysing the long wavelength, low energy effective action that describes this model, we arrive at the phase diagram as a function of χ=J2J1\chi = \frac{J_2}{J_1} . The interesting part of this phase diagram is that for small χ\chi, which includes χ=0\chi =0, there is a phase with no long range spin order and with gapless and spin zero low lying excitations. We discuss our results in the context of earlier, numerical and experimental work.Comment: 21 pages, latex file with 5 figure

    Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet

    Full text link
    We present the results of an exact diagonalization study of the spin-1/2 Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore lattice, also known as the square lattice with crossings or the checkerboard lattice. Examining the low energy spectra for systems of up to 24 spins, we find that all clusters studied have non-degenerate ground states with total spin zero, and big energy gaps to states with higher total spin. We also find a large number of non-magnetic excitations at energies within this spin gap. Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte

    Comments on gluon scattering amplitudes via AdS/CFT

    Full text link
    In this article we consider n gluon color ordered, planar amplitudes in N=4 super Yang Mills at strong 't Hooft coupling. These amplitudes are approximated by classical surfaces in AdS_5 space. We compute the value of the amplitude for a particular kinematic configuration for a large number of gluons and find that the result disagrees with a recent guess for the exact value of the amplitude. Our results are still compatible with a possible relation between amplitudes and Wilson loops. In addition, we also give a prescription for computing processes involving local operators and asymptotic states with a fixed number of gluons. As a byproduct, we also obtain a string theory prescription for computing the dual of the ordinary Wilson loop, Tr P exp[ i\oint A ], with no couplings to the scalars. We also evaluate the quark-antiquark potential at two loops.Comment: 27 pages, 9 figures,v3:minor correction

    The Anderson-Mott Transition as a Random-Field Problem

    Full text link
    The Anderson-Mott transition of disordered interacting electrons is shown to share many physical and technical features with classical random-field systems. A renormalization group study of an order parameter field theory for the Anderson-Mott transition shows that random-field terms appear at one-loop order. They lead to an upper critical dimension dc+=6d_{c}^{+}=6 for this model. For d>6d>6 the critical behavior is mean-field like. For d<6d<6 an ϵ\epsilon-expansion yields exponents that coincide with those for the random-field Ising model. Implications of these results are discussed.Comment: 8pp, REVTeX, db/94/

    Non-Universal Power Law of the "Hall Scattering Rate" in a Single-Layer Cuprate Bi_{2}Sr_{2-x}La_{x}CuO_{6}

    Full text link
    In-plane resistivity \rho_{ab}, Hall coefficient, and magnetoresistance (MR) are measured in a series of high-quality Bi_{2}Sr_{2-x}La_{x}CuO_{6} crystals with various carrier concentrations, from underdope to overdope. Our crystals show the highest T_c (33 K) and the smallest residual resistivity ever reported for Bi-2201 at optimum doping. It is found that the temperature dependence of the Hall angle obeys a power law T^n with n systematically decreasing with increasing doping, which questions the universality of the Fermi-liquid-like T^2 dependence of the "Hall scattering rate". In particular, the Hall angle of the optimally-doped sample changes as T^{1.7}, not as T^2, while \rho_{ab} shows a good T-linear behavior. The systematics of the MR indicates an increasing role of spin scattering in underdoped samples.Comment: 4 pages, 5 figure

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Superconductivity in the two dimensional Hubbard Model.

    Full text link
    Quasiparticle bands of the two-dimensional Hubbard model are calculated using the Roth two-pole approximation to the one particle Green's function. Excellent agreement is obtained with recent Monte Carlo calculations, including an anomalous volume of the Fermi surface near half-filling, which can possibly be explained in terms of a breakdown of Fermi liquid theory. The calculated bands are very flat around the (pi,0) points of the Brillouin zone in agreement with photoemission measurements of cuprate superconductors. With doping there is a shift in spectral weight from the upper band to the lower band. The Roth method is extended to deal with superconductivity within a four-pole approximation allowing electron-hole mixing. It is shown that triplet p-wave pairing never occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal doping occurs when the van Hove singularity, corresponding to the flat band part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations play an important role in flattening the bands near the Fermi level and in favouring superconductivity. However the mechanism for superconductivity is a local one, in contrast to spin fluctuation exchange models. For reasonable values of the hopping parameter the transition temperature T_c is in the range 10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c) ~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11. Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file, (self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
    • …
    corecore