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Landau Expansion for the Kugel-Khomskii t2g Hamiltonian

Abstract
The Kugel-Khomskii (KK) Hamiltonian describes spin and orbital superexchange interactions between d1

ions in an ideal cubic perovskite structure, in which the three t2g orbitals are degenerate in energy and electron
hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-
field theory in which each site i has its own n×n single-site density matrix ρ(i), where n, the number of allowed
single-particle states, is 6 (3 orbital times 2 spin states). The variational free energy from this 35 parameter
density matrix is shown to exhibit the unusual symmetries noted previously, which lead to a wave-vector-
dependent susceptibility for spins in α orbitals which is dispersionless in the qα direction. Thus, for the cubic
KK model itself, mean-field theory does not provide wavevector “selection,” in agreement with rigorous
symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions
are introduced, the susceptibility has dispersion in all directions in q space, but the resulting antiferromagnetic
mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave
spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments.
When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of
these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect
of a Hund’s rule coupling of sufficient strength is to produce a state with orbital order.
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The Kugel-Khomskii~KK ! Hamiltonian describes spin and orbital superexchange interactions betweend1

ions in an ideal cubic perovskite structure, in which the threet2g orbitals are degenerate in energy and electron
hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-field
theory in which each sitei has its ownn3n single-site density matrixr( i ), wheren, the number of allowed
single-particle states, is 6~3 orbital times 2 spin states!. The variational free energy from this 35 parameter
density matrix is shown to exhibit the unusual symmetries noted previously, which lead to a wave-vector-
dependent susceptibility for spins ina orbitals which is dispersionless in theqa direction. Thus, for the cubic
KK model itself, mean-field theory does not provide wavevector ‘‘selection,’’ in agreement with rigorous
symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions
are introduced, the susceptibility has dispersion in all directions inq space, but the resulting antiferromagnetic
mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave
spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments.
When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of
these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect
of a Hund’s rule coupling of sufficient strength is to produce a state with orbital order.

DOI: 10.1103/PhysRevB.69.094409 PACS number~s!: 75.10.2b, 71.27.1a, 75.30.Et, 75.30.Gw

I. INTRODUCTION

High-temperature superconductivity1 and colossal
magnetoresistance2 have sparked much recent interest in the
magnetic properties of transition-metal oxides, particularly
those with orbital degeneracy.3,4 In many transition-metal ox-
ides, thed electrons are localized due to the very large on-
site Coulomb interactionU. In cubic oxide perovskites, the
crystal field of the surrounding oxygen octahedra splits thed
orbitals into a twofold degenerateeg and a threefold degen-
eratet2g manifold. In most cases, these degeneracies are fur-
ther lifted by a cooperative Jahn-Teller~JT! distortion,3 and
the low-energy physics is well described by an effective su-
perexchange spin-only model.5–7 However, some perovs-
kites, such as LaTiO3,8,9 do not undergo a significant JT
distortion, in spite of the orbital degeneracy.10 If these dis-
tortions were really small, then one might need to consider
not only the spin degrees of freedom but also the degenerate
orbital degrees of freedom.3,4,11 The large degeneracy of the
resulting ground states may then yield rich phase diagrams,
with exotic types of order, involving a strong interplay be-
tween the spin and orbital sectors.4,8,9 The study of the ide-
alized cubic model thus has two major motivations: on one
hand, this is a very interesting theoretical model, which can
exhibit novel phases and help in understanding the system-
atics of the competition between orbital and spin order. On
the other hand, this model might serve as a ‘‘minimal’’ start-
ing model for the study of realistic systems, like LaTiO3. In
this paper we adopt mainly the first motivation: We present a

systematic study of the cubic model, with several symmetry-
breaking perturbations, and discuss several interesting and
unusual possible types of order which arise. In the process
we also explain why this minimal model cannot be used to
explain the observed behavior of LaTiO3.

In the idealized cubic model, there is oned electron in the
t2g degenerate manifold, which contains the wave functions
uX&[dyz , uY&[dxz , and uZ&[dxy . Following Kugel and
Khomskii ~KK !,11 one starts from a Hubbard model with
on-site Coulomb energyU and nearest-neighbor~nn! hop-
ping energyt. For largeU, this model can be reduced to an
effective superexchange model, which involves only nn spin
and orbital coupling, with energies of ordere5t2/U. This
low-energy model has been the basis for several theoretical
studies of the titanates. In particular, it has been suggested12

that the KK Hamiltonian gives rise to an ordered isotropic
spin phase, and that an energy gap in the spin excitations can
be caused by spin-orbit interactions.13 However, these papers
are based on assumptions and approximations which are hard
to assess. Recently14 ~this will be referred to as I! we have
presented rigorous symmetry arguments which show several
unusual symmetries of the cubic KK Hamiltonian. Perhaps
the most striking symmetry is the rotational invariance of the
total spin ofa orbitals~wherea5X, Y, or Z) summed over
all sites in a plane perpendicular to thea axis. This symme-
try implies that in the disordered phase the wave-vector-
dependent spin susceptibility fora orbitals,xa(q), is disper-
sionless in theqa direction. In addition, as discussed in I,
this symmetry implies that the system does not support long-
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range spin order at any nonzero temperature. Thus the ideal-
ized cubic KK model is an inappropriate starting point to
describe the properties of LaTiO3. This peculiar rotational
invariance depends on the special symmetry of the hopping
matrix element, and it can be broken by almost any pertur-
bation such as rotation of the oxygen octahedra. Here we
consider the effect of symmetry-breaking perturbations due
to ~a! spin-orbit interactions,~b! next-nearest-neighbor~nnn!
hopping, and~c! Hund’s rule coupling. According to the gen-
eral symmetry argument of I, although long-range order at
nonzero temperature is possible when spin-orbit interactions
are included, the system still possesses enough rotation sym-
metry that the excitation spectrum should be gapless.~This
conclusion is perhaps surprising because once spin-orbit in-
teractions are included, the system might be expected to dis-
tinguish directions relative to those defined by the lattice.!
This argument would imply that mean-field theory will pro-
duce a state which has a continuous degeneracy associated
with global rotation of the spins. The purpose of this paper is
to implement mean-field theory and to interpret the results
obtained therefrom in light of the general symmetry argu-
ments. We will carry out this analysis using the variational
properties of the density matrix. In a separate paper15 ~which
we will refer to as III, the present paper being paper II! we
will study the self-consistent equations of mean-field theory
which contain information equivalent to what we obtain
here, but in a form which is better suited to a study of the
ordered phase. Here our analysis is carried out for the cubic
KK Hamiltonian with and without the inclusion of the
symmetry-breaking perturbations mentioned above. In the
presence of spin-orbit interactions we find that the staggered
moments of different orbital states are not collinear, so that
the net spin moment is greatly reduced from its spin-only
value. The effect of nnn hopping is also interesting. Within
mean-field theory, this perturbation was found to stabilize a
state having long-range staggered spin order for each orbital
state, but the staggered spins of the three orbital states add to
zero. When only Hund’s rule coupling is included, mean-
field theory predicts stabilization of long-range spin and or-
bital order. However, elsewhere16 we show that fluctuations
favor spin-only order. As a result, a state with long-range
order of both spin and orbital degrees of freedom can only
occur when the strength of the Hund’s rule coupling exceeds
some critical value which we cannot estimate in the present
formalism. As stated, LaTiO3 does not exhibit any of the
exotic structures found here. Its real structure probably sup-
ports a nondegenerate singlet2g state per Ti ion, and there-
fore a simple antiferromagnetic spin structure.17 However,
our general discussion may still apply to other~yet unknown!
perovskites, and the new structures are certainly of general
theoretical interest.

Briefly this paper is organized as follows. In Sec. II we
discuss the KK Hamiltonian and fix the notation we will use.
In Sec. III we discuss the construction of the mean-field trial
density matrix as the product of single-site density matrices,
each of which acts on the space of six one-electron states of
an ion, and whose parametrization therefore requires 35 pa-
rameters. Here we show that the wave-vector-dependent spin
susceptibilities which diverge as the temperature is lowered

through a critical value have dispersionless directions, so that
unusually mean-field theory provides no ‘‘wave vector selec-
tion’’ at the mean-field transition. In Sec. IV we discuss the
Landau expansion at quartic order. In Sec. V we treat several
lower symmetry perturbations, namely, spin-orbit interac-
tions, nnn hopping, and Hund’s rule coupling. In each of
these cases ‘‘wave vector selection’’ leads to the usual two-
sublattice structure, but the qualitative nature of ordering de-
pends on which perturbation is considered. In Sec. VI we
summarize our work and discuss its implications.

II. THE HAMILTONIAN

The system we treat is a simple cubic lattice of ions with
oned electron per ion in ad band whose five orbital states
are split into aneg doublet at high energy and at2g triplet at
low energy. Following the seminal work of KK,11 we de-
scribe this system by a Hubbard HamiltonianHH of the form

HH5(
ias

eacias
† cias1(̂

i j &
(
abs

tab~ i , j !cias
† cj bs

1U(
i

(
a<b

(
ss8

cias
† ciascibs8

† cibs8 , ~1!

wherecias
† creates an electron in the orbital labeleda in spin

states on site i, ea is the crystal-field energy of thea or-
bital, tab( i , j ) is the matrix element for hopping between
orbital a of site i and orbitalb of site j, and ^ i j & indicates
that the sum is over pairs of nearest-neighboring sitesi and j
on a simple cubic lattice. It is convenient to refer to the
orbital state of an electron as its ‘‘flavor.’’ In this terminology
cias

† creates an electron of flavora andz component of spin
s on sitei. Initially we consider the case when the Coulomb
interaction does not depend on which orbitals the electrons
are in. In a later section we will consider the effects of
Hund’s-rule coupling. In a cubic crystal field, the crystal-
field energyea splits the five orbitald states into a low-
energy triplet, whose states aredyz[X, dxz[Y, and dxy
[Z, and a high-energy doublet, whose presence is ignored.
In this model it is assumed that hopping occurs only between
nearest neighbors and proceeds via superexchange through
an intervening oxygenp orbital, so that the symmetry of the
hopping matrix is that illustrated in Fig. 1. Thustab is zero if
aÞb and taa( i , j )5t, except thattaa( i , j ) vanishes if the
bond^ i j & is parallel to thea axis.11 Thea axis is called18 the
inactive axis for hopping betweena orbitals. Whent!U,
KK reduced the above Hubbard Hamiltonian to an effective
Hamiltonian for the manifold of states for which each site
has one electron in at2g orbital state. We will call this low-
energy Hamiltonian the KK Hamiltonian and it can be re-
garded as a many-band generalization of the Heisenberg
Hamiltonian. The KK Hamiltonian is often written in terms
of spin variables to make the analogy with the Heisenberg
model more apparent, but for our purposes it is more conve-
nient to write the~KK ! Hamiltonian in the form
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HKK5e(̂
i j &

(
bgÞ^ i j &

(
hr

cibh
† cigrcj gr

† cj bh

[e(̂
i j &

(
bgÞ^ i j &

(
hr

Qbh;gr~ i !Qgr;bh~ j !, ~2!

wheree52t2/U and the notationbgÞ^ i j & indicates that in
the sum overb andg neither of these are allowed to be the
same as the coordinate direction of the bond^ i j &.

Previously14 we pointed out several unusual symmetries
of this Hamiltonian. By ana plane we mean any plane per-
pendicular to thea axis ~which is the inactive axis fora
hopping!. In I we showed that the total number of electrons
in ana plane which are ina orbitals is constant. In addition,
the total spin vector~as well as itsz component! summed
over all electrons ina orbitals in any givena plane was
shown to be a good quantum number. The fact that one can
rotate the spin of alla electrons~these are electrons ina
orbitals! in any a plane at no cost in energy implies that
there is no long-range spin order at any nonzero
temperature.14 Nevertheless, since experiment8 shows that
LaTiO3 does exhibit long-range spin order, it must be that
spin ordering is caused by some, possibly small, symmetry-
breaking perturbation, which should be added to the ideal-

ized KK model. Therefore it is worthwhile investigating
what form of long-range order results when possible symme-
try breaking perturbations are included. Although the mean-
field results we obtain below should not be taken quantita-
tively, they may form a qualitative guide to the type of
ordering one might expect for more realistic extensions of
the above KK model. We also noted6,14 that even when spin-
orbit coupling is included, the Hamiltonian has sufficient
symmetry that the spin-wave spectrum remains gapless. As a
result, the gap observed8 in the excitation spectrum of
LaTiO3 cannot be explained on the basis of the KK Hamil-
tonian with only the spin-orbit interaction as a perturbation.
As we shall see, these symmetries are realized by the mean-
field solutions we obtain.

III. LANDAU EXPANSION AT QUADRATIC ORDER

We will develop the Landau expansion of the free energy
as a multivariable expansion in powers of the full set of order
parameters necessary to describe the free energy arising from
the KK Hamiltonian. In this section we construct this expan-
sion up to quadratic order in these order parameters and
thereby analyze the instability of the disordered phase rela-
tive to arbitrary types of long-range order. In later sections
we discuss how this picture is modified by higher-order
terms in the expansion, and by the addition of various
symmetry-breaking terms into the Hamiltonian.

A. Parametrizing the density matrix

The version of mean-field theory which we will imple-
ment is based on the variational principle according to which
the exact free energy is obtained by minimizing the free-
energy functionalF(r) as a function of the trial density ma-
trix r, which must be Hermitian, have no negative eigenval-
ues, and be normalized by Trr51. Here the trial free energy
is

F~r!5Tr@r~H1kT ln r!#, ~3!

where the first term is the trial energy and the second is
2T times the trial entropy, whereT is the temperature.
Mean-field theory is obtained by the ansatz thatr is the
product of single-site density matrices,r( i ):

r5)
i

r~ i !, ~4!

and F(r) is then minimized with respect to the variables
used to parametrize the density matrix,r( i ). Sincer( i ) acts
in the space oft2g states of one electron, it is a 636 dimen-
sional Hermitian matrix with unit trace.

The most general trial density matrix~for site i ) can be
written in the form

r~ i !5
1

6
I1X~ i !, ~5!

where

FIG. 1. A schematic view of theuZ&5dxy orbitals and the~in-
direct! hopping parametert via intermediate oxygenp orbitals.
Positive ~negative! regions of wave functions are represented by
dark ~light! lobes. In~a! we show that the hopping matrix elements
between orbitals of different flavors are zero. In~b! we show that
there is no indirect hopping along thez axis for an electron in theZ
orbital, due to symmetry.
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X~ i !5(
ab

(
rh

ciar
† Yarbh~ i !cibh ~6!

with

Yarbh~ i !5Aab~ i !drh1B¢ ab~ i !•s¢ rh . ~7!

Here s¢ is the Pauli matrix vector, andAab( i ), Bab
x ( i ),

Bab
y ( i ), andBab

z ( i ) are 333 Hermitian matrices, of which
the first is traceless. The diagonal terms of the matrixA are
parametrized for later convenience as

Axx~ i !5
a1~ i !

A6
1

a2~ i !

A2
, Ayy~ i !5

a1~ i !

A6
2

a2~ i !

A2
,

Azz~ i !52Axx~ i !2Ayy~ i !, ~8!

such that

Axx
2 ~ i !1Ayy

2 ~ i !1Axzz
2 ~ i !5a1

2~ i !1a2
2~ i !,

2Axx
2 ~ i !2Ayy

2 ~ i !12Azz
2 ~ i !5a1

2~ i !2a2
2~ i !. ~9!

For any operatorO( i ) associated with sitei we define

^O~ i !&[Tr@O~ i !r#, ~10!

where Tr denotes a trace over the six statesua,s& of the
atom at sitei with a singlet2g electron. Then the diagonal
matrix elements ofA( i ) give the occupations of orbital
states,

^Na~ i !&5K (
s

cias
† ciasL 5

1

3
12Aaa~ i !, ~11!

which may be related to the matrix elements of the angular
momentum,L,

K Lx
2~ i !21

3 L 5^Nx~ i !&5
1

3
1

2

A6
a1~ i !1A2a2~ i !,

K Ly
2~ i !21

3 L 5^Ny~ i !&5
1

3
1

2

A6
a1~ i !2A2a2~ i !,

K Lz
2~ i !21

3 L 5^Nz~ i !&5
1

3
2

4

A6
a1~ i !. ~12!

The off-diagonal matrix elements ofA( i ) are

^Lg~ i !&5 i(
ab

(
s

^cias
† cibs&eabg522i(

ab
Aba~ i !eabg ,

~13!

whereeabg is the fully antisymmetric tensor. Similarly,

^Lb~ i !Lg~ i !1Lg~ i !Lb~ i !&523(
s

^cibs
† cigs1cigs

† cibs&

526@Abg~ i !1Agb~ i !#. ~14!

Similarly, the diagonal matrix elements ofBg( i ),Baa
g ( i ),

give the thermal expectation value of theg component of the
spin of a-flavor of theith electron,Sag( i ):

^Sag~ i !&5(
sh

^cias
† ssh

g ciah&52Baa
g ~ i !. ~15!

The off-diagonal matrix elements ofBg( i ) are related to the
order-parameters associated with correlated ordering of spins
and orbits.

In general, the density matrix Eq.~5! yields the average

^Qas;bh~ i !&[^cias
† cibh&5

1

6
dabdsh

1TrF (
a8b8

rt

cias
† cibhcia8r

†
@Aa8b8~ i !drt

1B¢ a8b8~ i !•s¢ rt#cib8tG
5dabdsh/61Aba~ i !dsh1B¢ ba~ i !•s¢ hs .

~16!

B. Construction of the trial free energy

Using the result Eq.~16!, we get the trial energyU as

U5e(̂
i j &

(
bgÞ^ i j &

(
hr

^Qbh;gr~ i !&^Qgr;bh~ j !&

52e(̂
i j &

(
abÞ^ i j &

@Aab~ i !Aba~ j !1B¢ ab~ i !•B¢ ba~ j !#,

~17!

where we have used the identity

(
r2

~B¢ a1a2
•s¢ r1r2

!~B¢ a2a3
•s¢ r2r3

!

5B¢ a1a2
•B¢ a2a3

dr1r3
1 i s¢ r1r3

•B¢ a1a2
3B¢ a2a3

.

~18!

Here and below we drop terms independent of the trial order
parameters.

Using Eq.~5! we write the trial entropy as

2TS5kT(
i

Tr@3X2~ i !26X3~ i !118X4~ i !1•••#,

~19!

where we noted that TrX( i )50. The second-order contribu-
tion is found from
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Tr@X2~ i !#5 (
ab

a8b8

(
hr

h8r8

Tr@ciar
† Yarbh~ i !cibh

3cia8r8
† Ya8r8b8h8~ i !cib8h8#

5(
ab

(
hr

Yarbh~ i !Ybhar~ i !

52(
ab

@Aab~ i !Aba~ i !1B¢ ab~ i !•B¢ ba~ i !#.

~20!

At quadratic order the trial free energy,F5F2, is thus

F25
1

2 (
i j

(
ab

xab
21~ i , j !@Aab~ i !Aba~ j !1B¢ ab~ i !•B¢ ba~ j !#,

~21!

where the inverse susceptibility is given by

xab
21~ i , j !512kTd i j 12eg i j ~12d i j ,a!~12d i j ,b!. ~22!

Hereg i j is unity if sitesi and j are nearest neighbors and is
zero otherwise, andd i j ,a is unity if the bond̂ i j & is along the
a direction and is zero otherwise.

C. Stability analysis: Wave-vector selection

We now carry out a stability analysis of the disordered
phase. At quadratic order in the Landau expansion, possible
phase transitions from the disordered phase to a phase with
long-range order are signaled by the divergence of a suscep-
tibility. Depending on the higher-than-quadratic order terms
in the Landau expansion, such a transition may~or may not!
be preempted by a first-order~discontinuous! phase transi-
tion. So mean-field theory is a simple and usually effective
way to predict the nature of the ordered phase in systems
where it may not be easy to guess it. To implement the sta-
bility analysis we diagonalize the inverse susceptibility ma-
trix by going to Fourier transformed variables, whose generic
definition is

F~q!5
1

AN
(

i
F~r i !e

2 iq•r i,

F~r i !5
1

AN
(

q
F~q!eiq•r i, ~23!

where N is the total number of lattice sites. Then the free
energy at quadratic order isF25(qF2(q), where

F25
1

2 (
q

(
ab

xab
21~q!@Aab~q!Aba~2q!

1B¢ ab~q!•B¢ ba~2q!# ~24!

with

xab
21~q!512kT12e(

Rnn

e2 iq•Rnn~12dRnn ,aâ!~12dRnn ,ab̂!,

~25!

whereRnn is a vector to a nearest-neighbor site, andâ is the
unit vector in thea direction. We hence see that we have
only two kinds of inverse susceptibilities, the one for the
diagonal elements, namely,

xaa
21~q!512kT12e(

Rnn

e2 iq•Rnn~12dRnn ,aâ!

512kT12e(
bg

eabg
2 ~cb1cg!, ~26!

and the second for the off-diagonal matrix elements, namely,

xab
21~q!512kT12e(

Rnn

e2 iq•Rnn~12dRnn ,aâ2dRnn ,ab̂!

512kT14e(
g

eabg
2 cg , ~27!

whereca[cos(qaa).
At high temperature all the eigenvalues of the susceptibil-

ity matrix are finite and positive. As the temperature is re-
duced, one or more eigenvalues may become zero, corre-
sponding to an infinite susceptibility. Usually this instability
will occur at some value of wave vector~or more precisely at
the star of some wave vector!, and this set of wave vectors
describes the periodicity of the ordered phase near the order-
ing transition. This phenomenon is referred to as ‘‘wave-
vector selection.’’ In addition, and we will later see several
examples of this, the eigenvector associated with the diver-
gent susceptibility contains information on the qualitative na-
ture of the ordering. Here, a central question which the ei-
genvector addresses is whether the ordering is in the spin
sector, the orbital sector, or both sectors. If the unstable ei-
genvector is degenerate, one can usually determine the sym-
metries which give rise to Goldstone~gapless! excitations.
~We will meet this situation in connection with our treatment
of spin-orbit interactions.! In the present case, we see from
Eqs. ~26! and ~27! that the instabilities~where an inverse
susceptibility vanishes! first appear atkT52e/3 for the di-
agonal susceptibilities. Consider first the susceptibilities for
unequal occupations of the three orbital states. Making use
of Eqs.~8! and ~26!, we write

(
a

xaa
21~q!Aaa~q!Aaa~2q!5@a1~q!a2~q!#xn~q!

3Fa1~2q!

a2~2q!
G , ~28!

with the 232 susceptibility matrixxn given by

xn,11
21 ~q!512kT1

2e

3
~5cx15cy12cz!, ~29!

xn,22
21 ~q!512kT12e~cx1cy12cz!,
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xn,12
21 ~q!5xn,21

21 ~q!5
2e

A3
~cy2cx!.

The instability occurs for both eigenvalues of the inverse
susceptibility matrixxn,,m

21 (q), but only when the wave vec-
tor q assumes its antiferromagnetic valueQ5(p,p,p)/a
which leads to a two sublattice structure~see Fig. 2! called
the ‘‘G’’ state. The twofold degeneracy is the symmetry as-
sociated with rotations in occupation number space^Nx&,
^Ny&, and ^Nz& with the constraint that the sum of these
occupation numbers is unity.~At quadratic order we do not
yet feel the discrete cubic symmetry of the orbital states.! In
contrast, the inverse spin susceptibilityxaa

21 of Eq. ~26! has a
flat branch so that it vanishes forkT52e/3 for any value of
qa , when the two other components ofq assume the antifer-
romagnetic valuep/a. This wave vector dependence indi-
cates that correlations in the spin susceptibility become long
ranged in ana plane, but differenta planes are completely
uncorrelated. Note that beyond the fact that there is no wave
vector selection in the spin susceptibility, one has complete
rotational invariance inBaa

g (q) for the components labeled
by g independently for each orbital labeleda. This result
reflects the exact symmetry of the Hamiltonian with respect
to rotation of the total spin in thea orbital summed over all
spins in any singlea plane.14 If we restrict attention to theG
wave vectorq5Q, we have complete rotational degeneracy
in the 11 dimensional space consisting of the nineBaa

g (Q)
spin-orbit order parameters and the twoan(Q) orbital occu-
pational order parameters. Thus at this level of approxima-
tion, we haveO(11) symmetry. Most of this symmetry only
holds at quadratic order in mean-field theory. As usual, we
expect that fourth~and higher! order terms in the Landau
expansion will generate anisotropies in this 11-dimensional
space to lower the symmetry to the actual cubic symmetry of
the system. As we will see, the anisotropy which inhibits the
mixing of spin and orbit degrees of freedom is not generated
by the quartic terms in the free energy. Perhaps unexpectedly,
as we show elsewhere,16 this anisotropy is only generated by
fluctuations not accessible to mean-field theory.

Dispersionless branches of order-parameter susceptibili-
ties which lead to an infinite degeneracy of mean-field states,

have been found in a variety of models,19–22 of which per-
haps the most celebrated is that in the kagome´23 and
pyrochlore24 systems. In almost all cases, the dispersionless
susceptibility is an artifact of mean-field theory and does not
represent a true symmetry of the full Hamiltonian. In such a
case, the continuous degeneracy is lifted by fluctuations,
which can either be thermal fluctuations25 or quantum
fluctuations.26 Here we have a rather unusual case in that the
spin susceptibility has a dispersionless direction~parallel to
the inactive axis! which is the result of an exact true sym-
metry of the quantum Hamiltonian which persists even in the
presence of thermal and quantum fluctuations.

IV. LANDAU EXPANSION AT QUARTIC ORDER

To discuss the nature of the ordered state one may con-
sider the self-consistent equations for the nonzero order pa-
rameters which appear below the ordering temperature at
kTc52e/3 and this is done in III. However, the types of
possible ordering should also be apparent from the form of
the anisotropy of the free energy in order-parameter space
which first occurs in terms in the free energy which are quar-
tic in the order parameters. In principle, long-range order is
only possible when we add to the Hamiltonian terms which
destroy the symmetry whereby one can rotate arbitrarily
planes of spins associated with a given orbital flavor. In the
following section we study several perturbations which sta-
bilize long-range order. Although the nature of the ordering
depends on the perturbation, generically the resulting disper-
sion due to this symmetry-breaking perturbation stabilizes
the G structure, so that the instabilities are confined to the
wave vectorq5Q. In this section we implicitly assume this
scenario.

Accordingly, we now evaluate all terms in the free energy
which involve four powers of the critical variablesBaa

g (Q)
andAaa(Q) at the wave vector associated with the assumed
two sublattice, orG, structure. These terms arise from two
mechanisms. The first contribution, which we denoteF4

(4) ,
arises from ‘‘bare’’ quartic terms in Eq.~19!. The second
type of contribution arises indirectly throughX3( i ) in Eq.
~19!. There we have contributions to the free energy which
involve two critical variables and one noncritical variable
~evaluated at zero wave vector!. When the free energy is
minimized with respect to this noncritical variable, we obtain
contributions to the free energy which are quartic in the criti-
cal order parameters and which we denoteF4

(3) .

A. Bare quartic terms, F 4
„4…

The bare quartic terms are obtained from Eq.~A4!, by
taking into account only diagonal matrix elements of the
matricesA andB¢ . Since the fourth-order term of the entropy
is multiplied by 18kT @see Eq.~19!# and we can safely put
here 18kT512e, we find that the bare quartic terms are
given by

F4
(4)524e(

i
(
a

@Aaa
4 ~ i !16Aaa

2 ~ i !sa
2~ i !1sa

4~ i !#,

~30!

FIG. 2. The two sublattice ‘‘G’’ state which consists of two
interpenetrating simple cubic lattices on each site of which the ions
are in a given state, eitherA or B.
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where we have denoted

sa
2~ i !5@Baa

x ~ i !#21@Baa
y ~ i !#21@Baa

z ~ i !#2. ~31!

Introducing Fourier transformed variables via Eq.~23! we
thereby obtain terms quartic in the critical order parameters
as

F4
(4)5

24e

N (
a

@Aaa
4 16Aaa

2 sa
21sa

4 #, ~32!

where now all order parameters are to be evaluated at wave
vectorQ. Using for the matrix elements ofA the parametri-
zation Eq.~8!, we find

F4
(4)5

e

N
$12~a1

21a2
2!2148A3a1a2~sx

22sy
2!

148~a1
21a2

2!~sx
21sy

21sz
2!124~sx

41sy
41sz

4!

224~a1
22a2

2!~sx
21sy

222sz
2!%. ~33!

B. Induced quartic terms, F 4
„3…

To obtain the terms of this type, we first take from Eq.
~A2! all the terms having diagonal matrix elements. Multi-
plying them by26kT524e @see Eq.~19!#, we have

V3528e(
ia

@Aaa
3 ~ i !13Aaa~ i !B¢ aa~ i !•B¢ aa~ i !#. ~34!

Next we insert here the Fourier transforms. The critical vari-
ables we treat here are the Fourier components at wave vec-
tor Q[(p,p,p)/a. When the wave vector isQ, it will be
left implicit. We indicate explicitly only those variables taken
at zero wave vector. ThenV3 is given by

V352
24e

AN
(
a

@Aaa~0!~Aaa
2 1sa

2 !12B¢ aa~0!•B¢ aaAaa#,

~35!

where we have used Eq.~31!.
We now eliminate the noncritical variables at zero wave

vector by minimizing the free energy with respect to them.
We note that all the noncritical zero wave vector variables
have the same susceptibility

x~0!5~12kT18e!215~16e!21, ~36!

and therefore the function to minimize is

Ṽ35V318e(
a

@Aaa
2 ~0!1B¢ aa~0!•B¢ aa~0!#. ~37!

The minimization procedure, allowing for the constraint
(aAaa(0)50 yields

Baa
g ~0!5

3

AN
Baa

g Aaa ,

Axx~0!5
1

2AN
~2Axx

2 12sx
22Ayy

2 2sy
22Azz

2 2sz
2!,

Ayy~0!5
1

2AN
~2Ayy

2 12sy
22Axx

2 2sx
22Azz

2 2sz
2!,

Azz~0!52Axx~0!2Ayy~0!. ~38!

Inserting these values into Eq.~37! yields the contribution
F4

(3) to the free energy

F4
(3)52

72e

N (
a

Aaa
2 sa

22
12e

N F(
a

~Aaa
2 1sa

2 !2

2~Axx
2 1sx

2!~Ayy
2 1sy

2!2~Ayy
2 1sy

2!~Azz
2 1sz

2!

2~Azz
2 1sz

2!~Axx
2 1sx

2!G , ~39!

which, upon inserting the parametrization~8! becomes

F4
(3)5

e

N H 212S (
a

sa
2 D 2

136(
a,b

sa
2sb

223~a1
21a2

2!2

236A3a1a2~sx
22sy

2!224~a1
21a2

2!~sx
21sy

21sz
2!

118~a1
22a2

2!~sx
21sy

222sz
2!J . ~40!

C. Total fourth-order anisotropy

Adding F4
(3) andF4

(4) , we findF4 as

F45
e

N H 12S (
a

sa
2 D 2

212(
a,b

sa
2sb

219~a1
21a2

2!2

124~a1
21a2

2!(
a

sa
2112A3a1a2@sx

22sy
2#

26~a1
22a2

2!@sx
21sy

222sz
2#J , ~41!

where all variables are evaluated at wave vectorQ. As men-
tioned above, the anisotropy of this form determines the na-
ture of the mean-field states of the ideal KK Hamiltonian. We
will give a complete analysis of the symmetry and conse-
quences of this fourth-order anisotropy in paper III. Here we
will use this form to determine the nature of possible ordered
states in the presence of symmetry-breaking perturbations
such as the spin-orbit interaction.

V. SYMMETRY-BREAKING PERTURBATIONS

As we have just seen, the idealized KK model considered
above has sufficient symmetry that there is no wave vector
selection27 within mean-field theory and the exact symmetry
of this model does not support long-range order at nonzero
temperature. In this section we consider the effects of various
additional perturbations which are inevitably present, even
when there is no distortion from perfect cubic symmetry. We
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consider in turn the effects of~a! spin-orbit coupling,~b!
further neighbor hopping, and~c! Hund’s rule or Coulomb
exchange coupling. Here we donot assume that the long-
range order only involves the wave vectorQ of the G struc-
ture. In other words our first objective is to see how these
various perturbations lead to~if they do! wave vector selec-
tion and what types of ordering result.

A. Spin-orbit interactions

We first consider the effect of including spin-orbit inter-
actions, since these interactions destroy the peculiar invari-
ance with respect to rotating planes of spins of different or-
bital flavors independently. Below we see that the addition of
spin-orbit coupling leads to a wave vector selection from the
susceptibility, which previously had a dispersionless axis in
the absence of such a perturbation. Indeed, a plausible guess
is that the system will select the wave vectorQ to allow
simultaneous condensation of spins of all three orbitals.

We write the spin-orbit interactionVSO as

VSO5l(
i

(
abg

(
mn

^auLgub&ciam
† cibn@sg#mn , ~42!

where

^auLgub&52 i eagb , ~43!

andl is the spin-orbit coupling constant. We now incorpo-
rate this perturbation into the mean-field treatment. The ex-
pression for the entropy does not need to be changed. The
trial energy involves Tr@r( i )VSO# and generates a perturba-
tive contribution to the free energy which is

dF52l(
i

(
abg

Bab
g ~ i !^buLgua&. ~44!

In terms of Fourier transformed variables this is

dF52lN1/2(
abg

Bab
g ~q50!^buLgua&. ~45!

Thus the spin-orbit interaction appears as a field acting on
the noncritical order parameterB¢ ab(q50), with aÞb.

We now calculate the perturbative effect of the spin-orbit
interaction. Because the perturbationVSO is the only term in
the Hamiltonian that causes a transition from one orbital to
another, the leading perturbation to the free energy will be of
order l2. We develop an expansion at temperatures infini-
tesimally belowTc52e/(3k) in powers ofl and$c%, where
$c% denotes the set of variables which, in the absence of
spin-orbit coupling, are critical at the highest temperature,
namely, kT52e/3. This set includesBaa

g (q) for q on its
‘‘soft line,’’ which is qa arbitrary and the other components
equal top/a. In addition, this set also includesAaa(Q),
namely,a1(Q) anda2(Q). The dominant perturbation to the
free energy will be of orderl2c ic j , wherec i is one of the
critical order parameters. Terms of orderl2c i are not al-
lowed, as they would cause ordering at all temperatures
aboveTc and contributions independent ofc i are of no in-
terest to us. So our goal is to calculate all terms of order

l2c ic j . By modifying the terms quadratic in the critical
order parameters we will obtain a free energy without a dis-
persionless branch of the susceptibility, and therefore the
spin-orbit perturbation will lead to wave vector selection.

Terms of orderl2c ic j in the free energy arise from either
bare fourth-order terms or indirectly from cubic terms. Here
we describe these contributions qualitatively. The explicit
calculations are given in Appendixes B and C. We first con-
sider contributions arising from the third-order terms. Note
that the spin-orbit perturbationVSO acts like a ‘‘field’’ in that
it couples linearly to the order parameterBab

g (q50), as one
can see from Eq.~45!. Minimization with respect to this
order parameter yields

Bab
g ~q50!52

l

6e
N1/2^buLgua&[ iN1/2g0eabg , ~46!

where g05l/(6e) and we noted that the nondiagonal in-
verse susceptibilityxab

21(0) is 12e at kT52e/3 @see Eq.
~27!#. In other words, we have the spatially uniform displace-
ment,Bab

g ( i )5 ig0eabg , which is linear inl. Now consider
third-order terms in the free energy which are schematically
of the form

dF5aBab
g ~q50!c ixj , ~47!

wherea is a constant, andxj is a noncritical variable, so that
its susceptibilityx j is finite at Tc . After minimizing with
respect toxj , we obtain a contribution to the free energy of
order2(1/2)x ja

2@Bab
g (q50)#2c i

2 , which is a term of order
l2c ic j ~albeit with i 5 j ). This perturbative contribution to
the free energy quadratic in the critical variables will be de-
notedF2

(3) . Note that these cubic terms@see Eq.~47!# are
identified as being linear in~a! Bab

g ; in ~b! a critical order

parameterc i , such asB¢ aa(qa) ~by this we meanB¢ aa evalu-
ated for a wave vector on its soft line!, or Aaa(Q), and in~c!
some noncritical order parameter. Terms of orderl2c ic j can
also come from bare fourth-order terms which are products
of two powers ofBab

g (q50) with two critical variables and
these contributions are denotedF2

(4) . All these terms will
then lead to modifications of the terms in the free energy
which are quadratic in the critical variables and which there-
fore may lead to wave vector selection within the previously
dispersionless critical sector.

We now identify cubic terms in Eq.~19! which are of the
form written in Eq.~47!. There are no nonzero cubic terms
which are linear in bothl and eithera1(Q) or a2(Q). The
allowed cubic terms are analyzed in Appendix B and the
result for their perturbative contributiondF2

(3) to the free
energy from minimizing these cubic terms is

F2
(3)52C0@a1

2~Q!1a2
2~Q!#

2C0(
abg

eabg
2 H(

qa

@2sag~q!sag~2q!

1saa~q!saa~2q!#1@sag~Q!sbg~Q!

22sbb~Q!sab~Q!#J , ~48!
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where C05144g0
2e54l2/e, and we have introduced the

definition

sab~q!5Baa
b ~q!. ~49!

In Eq. ~48!, (qa
means that the wave vector is summed over

the soft line so thatqm5p/a for mÞa andqa ranges from
2p/a to p/a. In particular, the sum overqa also includes
q5Q. In Appendix C we evaluate the bare quartic terms in
the free energy which also give a result of orderl2c ic j , and
find

F2
(4)5C0H 4

3 (
ag

(
qa

sag~q!sag~2q!1a1
2~Q!1a2

2~Q!

1
1

3(
abg

eabg
2 S 2sag~Q!sbg~Q!

2(
n

san~Q!sbn~Q! D J . ~50!

We now discuss the meaning of these results. One effect
of the spin-orbit contributions is to couple critical spin vari-
ables of different orbitals. But this type of coupling only
takes place at the wave vectorQ at which spin variables for
both orbitals are simultaneously critical. So we write the sum
of all the quadratic perturbations in terms of spin variables
sag listed above as

dF25
1

2 (
a

(
mn

F S (
qa

@Md
(a)#mnsma~q!sna~2q! D

1@Mo
(a)#mnsma~Q!sna~Q!G , ~51!

whereMd
(a) is a diagonal matrix andMo

(a) is an off-diagonal
matrix. These matrices are

Md
(a)52

4C0

3 F 1 0 0

0 1 0

0 0 1
G ,

Mo
(a)5

4C0

3 F 0 1 1

1 0 21

1 21 0
G , ~52!

where the first row and column refers tosaa and the other
two refer tosba , with bÞa. The contributions to the free
energy fromMd

(a) are independent of wave vector and thus
do not influence wave vector selection. The term inMo

(a)

selectsQ ~because the minimum eigenvalue of the matrix
Mo

(a) is 28C0/3, which is negative!. In addition, the mini-
mum eigenvector determines the linear combination of order
parameters that is critical. If this eigenvector has components
(c1 ,c2 ,c2), then, fora5x, we have

sxx~Q!5jxc1 , syx~Q!5jxc2 , szx~Q!5jxc2 , ~53!

where jx is the normal mode amplitude and we adopt the
normalizationc1

212c2
251. Thus, out of the nine spin com-

ponentssab(Q) which were simultaneously critical in the
absence of spin-orbit coupling, we have the spin fluctuation
corresponding to the three normal-mode amplitudesjx , jy ,
andjz in terms of which we write the staggered spin vector
for orbital a,sa(Q), as

sx~Q![@sxx~Q!,sxy~Q!,sxz~Q!#5~jxc1 ,jyc2 ,jzc2!,

~54!

sy~Q!5~jxc2 ,jyc1 ,jzc2!,

sz~Q!5~jxc2 ,jyc2 ,jzc1!.

The total spin at sitei is the sum of the spins associated with
each orbital flavor and is given by the staggered spin vector

S~Q!5~jx ,jy ,jz!~c112c2!, ~55!

so that thej ’s are proportional to the components of the total
spin. Now we evaluate the fourth-order free energy terms
relevant to the spin order parameters@see Eq.~41!# in terms
of these critical order parametersj i ,

dF5C1$@jx
21jy

21jz
2#2@c1

413c2
412c1

2c2
2#

2@jy
2jz

21jx
2jz

21jx
2jy

2#@c1
22c2

2#2%, ~56!

whereC1 is a constant. In general, a form like this would
have ‘‘cubic’’ anisotropy in that the vectorj ~the total spin
vector! would preferentially lie along a (1,1,1) direction in
order to maximize the negative term inja

2jb
2 . However, for

the present case, the minimum eigenvector ofMo
(a) is

(c1 ,c2 ,c2)}(1,21,21). Thus for the present casec1
25c2

2,
and the quartic term is isotropic inj space. What this means
is that although the spin-orbit interaction selects the direc-
tions for the spin vectorssa of orbital flavora relative to one
another, there is rotational invariance when all thesa’s are
rotated together. This indicates that relative to the mean-field
state there are zero frequency excitations which correspond
to rotations of the staggered spin. Here we find this result at
order l2. More generally, one can establish this rotational
invariance to all orders inl and without assuming the valid-
ity of mean-field theory.6,14

Note that the spin state induced by spin-orbit coupling
~with c152c2) doesnot have the spins of the individual
orbitals,sa , parallel to one another and thus the net spinS is
greatly reduced by this effect. Explicitly, whenc152c2, we
have

S25~jx
21jy

21jz
2!c1

25sx
2~Q!5sy

2~Q!5sz
2~Q!

5~jx
21jy

21jz
2!/3. ~57!

This means that the total spin squared is 1/3 of what it would
be if thesa were parallel to one another.

It remains to check that the variablesak(Q) are less criti-
cal thansag(Q). We therefore conclude that in the presence
of spin-orbit interactions, mean-field theory does give wave
vector selection and one has the usual two-sublattice antifer-
romagnet, but with a greatly reduced spin magnitude. It is
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interesting to note that8 LaTiO3 has a zero point moment
which is about 45% of the value of the fully aligned spin.
This zero-point spin reduction is much larger than would be
expected for a conventional spin 1/2 Heisenberg system in
three spatial dimensions. It is possible that spin-orbit inter-
actions might partially explain this anomalous spin reduc-
tion.

B. Further neighbor hopping

We now consider the effect of adding nnn hopping to the
Hubbard model of Eq.~1!. For a perfectly cubic system, this
hopping process comes from the next-to-shortest exchange
path between magnetic ions, as is shown in Fig. 3. We write
the perturbationV to the Hubbard Hamiltonian due to these
processes as

V5t8(
a

ga~ i , j !Vi j , ~58!

wheret8 is the effective hopping matrix element connecting
next-nearest neighbors,a is summed over coordinate direc-
tions x, y, and z, ga( i , j ) is unity if sites i and j are next-
nearest neighbors in the samea plane and is zero otherwise,
and

Vi j 5(
s

(
bd

eabd
2 cibs

† cj ds . ~59!

Here a is in the direction normal to the plane containing
spinsi and j, andeabd

2 restricts the sum overb andd to the
two ways of assigning indices so thata, b, and d are all

different. Note that the paths fromib to j d and from id to
j b use alternate paths of the square plaquette connectingi
and j. Notice that the processes which couple nearest neigh-
bors cancel by symmetry~see Fig. 4!, so that the effect of
hopping between magnetic ions via two intervening oxygen
ions involves only nnn hopping. This generates a perturba-
tion to the KK Hamiltonian~which describes the low-energy
manifold! of the form

VKK52
e8

2 (
a

(
i j

ga~ i , j !3S (
bds

eabd
2 cibs

† cj dsD
3S (

bds
eabd

2 cj bs
† cidsD , ~60!

wheree852(t8)2/U and U is the on-site Coulomb energy.
This may be written as

VKK5
e8

2 (
a

(
i j

ga~ i , j !Va~ i , j !, ~61!

where, apart from a term which is a constant in the low-
energy manifold, we have fora5x,

Vx~ i , j !5(
sh

~ciys
† cizhcjyh

† cjzs1ciys
† ciyhcjzh

† cjzs

1cizs
† cizhcjyh

† cjys1cizs
† ciyhcjzh

† cjys!, ~62!

and similarly fory andz.

FIG. 3. Hopping between different orbitals on next-nearest-
neighboring~nnn! Ti ions when hopping between neighboring oxy-
genp orbitals is allowed. The hopping matrix element is the product
of matrix elements to hop from a Ti ion in adyz state to an O ion in
a py state, then to an adjacent O ion also in apy state, and finally to
a nnn Ti ion in adxy state.

FIG. 4. Hopping between different orbitals on nearest-
neighboring Ti ions when hopping between neighboring oxygenp
orbitals is allowed. The matrix elements for the two channels to hop
from dyz to dxy have opposite signs, so that the total matrix element
~summed over the two channels! is zero, as one would deduce from
symmetry considerations. Thus the only processes involving two
nearest-neighboring oxygen ions are processes like those shown in
Fig. 3 between nnn Ti ions.
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The details of the mean-field treatment of this perturba-
tion are given in Appendix D. Here we summarize the major
analytic results obtained there for the wave-vector-dependent
spin susceptibility at the critical wave vector,Q,
xas;bs8(Q)5xab(Q)ds,s8 , wherea andb are orbital indi-
ces ands ands8 are spin indices. The result of Appendix D
is that

xab~Q!215F 12kT28e 8e8 8e8

8e8 12kT28e 8e8

8e8 8e8 12kT28e
G .

~63!

The minimum eigenvalue is

l512kT28e28e8. ~64!

This gives

kTc52~e1e8!/3. ~65!

By considering the eigenvectors and the effect of the fourth-
order terms, the analysis of Appendix D shows that nnn hop-
ping does stabilize aQ antiferromagnetic structure, but the
resulting 120° state has zero net staggered spin. In addition,
as before, there is a degeneracy between the spin-only states
we have just described, and a state involving orbital order.
As shown in III, fluctuations remove this degeneracy, so that
we may consider only the mean-field solutions for spin-only
states. Such a magnetic structure for which the local moment
~summed over all flavors! vanishes, will be rather difficult to
detect experimentally.

It is instructive to argue for the above results without
actually performing the detailed calculations of Appendix D.
We expect the effect of indirect exchange between nnn’s to
induce an antiferromagnetic interaction between the spins of
differentorbital flavors of nnn’s. Note that the wave vectorQ
describes a two sublattice structure in which nnn’s are on the
samesublattice. Accordingly, as far as mean-field theory is
concerned, an nnn interaction between different flavors is
equivalent to an antiferromagnetic interaction between spins
of different flavors on the same site. So the spins of the three
orbital flavors form the same structure as a triangular lattice
antiferromagnet,28 namely, the spins of the three different
orbital flavors are equal in magnitude and all lie in a single
plane with orientations 120° apart. This state still has global
rotational invariance, but also, as does the triangular lattice
antiferromagnet, it has degeneracy with respect to rotation of
the spins of two flavors about the axis of the spin of the third
flavor.

C. Hund’s rule coupling

We now consider the effect of Hund’s rule coupling. Our
aim is to see how this perturbation selects an ordered phase
from among those phases which would first become critical
in the absence of this perturbation as the temperature is re-
duced. To leading order inh[JH /U, where JH is the
Hund’s rule coupling constant~which is positive in real sys-
tems!, as discussed in Appendix E, this perturbation reads29

dHKK5eh(̂
i j &

(
bgÞ^ i j &

(
ss8

~cigs
† cibscj gs8

† cj bs8

2cigs8
† cibscj gs

† cj bs81cigs
† cibscj bs8

† cj gs8

2cibs8
† cibscj gs

† cj gs822cibs
† cibscj gs8

† cj gs8

12cigs8
† cibscj bs

† cj gs8!, ~66!

wheree5t2/U, as before.30 To see the effect of this pertur-
bation within mean-field theory, we calculate its average~see
Appendix E for details!. Confining to averages which are
critical whenh50 ~i.e., Aaa andB¢ aa) the result of Appen-
dix E is

^dHKK&5eh(̂
i j &

(
bgÞ^ i j &

@5Abb~ i !Abb~ j !2

10Abb~ i !Agg~ j !1B¢ bb~ i !•B¢ bb~ j !

22B¢ bb~ i !•B¢ gg~ j !#. ~67!

Using Eqs.~8! and ~49! to write the order parameters in
terms of thea,’s and thesag’s, this contributes a perturba-
tion to the free energy given by

dF5
1

2 (
k,l

d@xn
21~q!#klak~q!al~2q!

1
1

2 (
abg

d@xs
21~q!#ab

g sag~q!sbg~2q!, ~68!

where

d@xn
21~q!#

5220ehF 2
1

3
~2cx12cy2cz!

1

A3
~cx2cy!

1

A3
~cx2cy! 2cz

G
~69!

and

d@xs
21~q!#g524ehF 0 cz cy

cz 0 cx

cy cx 0
G . ~70!

If the minimum eigenvalue ofdx21 at wave vectorQ is
negative, then the instability temperature for the associated
order parameter is raised by the perturbation and vice versa.
Note that at wave vectorQ, cx5cy5cz521 the eigenval-
ues ofd@xs

21(q)# are 8he, 24he, and24he. On the other
hand, the eigenvalues ofd@xn

21(q)# are both220he. From
this result we conclude that Hund’s rule coupling favors an-
tiferromagnetic orbital ordering, as described by the order
parametersa1(Q) anda2(Q). Since the mean-field tempera-
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ture for spin and orbital ordering were degenerate forh
50, we conclude that within mean-field theory the addition
of an infinitesimal Hund’s rule coupling gives rise to an or-
dering transition in which the ordered state shows long-range
antiferromagnetic orbital order, characterized by the order-
parametersa1(Q) and a2(Q). However, since we have
shown elsewhere16 that for the bare KK model, fluctuations
stabilize the spin-only states relative to orbital states, we
conclude that when fluctuations are taken into account, it
will take a finite amount of Hund’s rule coupling to bring
about orbital ordering. For spin ordering the mean-field state
is degenerate with respect to an arbitrary rotation. This is
reflected by the fact that the term which is fourth order in the
spin components is isotropic.

We now discuss the anisotropy in the mean-field solution
for orbital order. We want to determine the form the free
energy assumes in terms of the Fourier-transformed variables
a1(Q) anda2(Q). Wave-vector conservation dictates that we
can have only products involving an even number of these
variables. If we write a1(Q)5a cosuq and a2(Q)
5a sinuq , then we show in Appendix F that the contribution
to the free energy of ordera4 is independent ofuq , but the
term of ordera6 is of the form dF5a6@C01C6 cos(6uq
1f)#. This form indicates an anisotropy, so that the mean-
field solution is not subject to a rotational degeneracy ina1-
a2 space. IfC6 is positive andf50, these minima come
from the six angles that are equivalent touq5p/21np/3.
For uq5p/2, a150 and we have ordering involving only
a2, so that^Nz&51/3, ^Nx&51/31A2a2( i ), and^Ny&51/3
2A2a2( i ). The six minima of cos(6uq) correspond to the six
permutations of coordinate labels which give equivalent or-
dering under cubic symmetry. Somewhat different states oc-
cur for C6 negative, but different solutions reproduce the
cubic symmetry operations.

D. Spin-orbit interactions and Hund’s rule coupling

Here we briefly consider the case when we include the
effects of both spin-orbit and Hund’s rule coupling. We con-
sider the instabilities at wave vectorQ. In this case we con-
struct the spin susceptibilityxs

21(Q) @defined as in Eq.~68!#.
For the present case we may use our previous calculations in
Eqs.~52! and ~68! to write

xs
21~g!5F l01x y y

y l01x z

y z l01x
G , ~71!

where the first row and column refer tosgg and the other two
rows and columns refer tosbg with bÞg and

x52
4

3
C0 , y5

4

3
C014eh, z52

4

3
C014eh. ~72!

Similarly the orbital susceptibility~also at wave vectorQ) is
given by

x~Q!n
215Fl01w 0

0 l01wG , ~73!

where

w52C0220eh. ~74!

In the aboveC054l2/e must be positive,l0512kT18e,
andh[JH /U is normally positive, although we may draw a
phase diagram incorporating the possibility thath is nega-
tive.

As we have seen, with only spin-orbit interactions we get
a spin state which has a rotational degeneracy, and with only
Hund’s rule interactions, the ordered phase has orbital rather
than spin ordering. When both interactions are present, there
is a competition between these two types of ordering. To
study this competition we need to compare the minimum
eigenvalue of the two susceptibility matrices given above.
For the inverse spin susceptibility matrixy>z, in which case
the minimum eigenvalue is

l25l01x1~z/2!2A~z/2!212y2. ~75!

On dimensional grounds, we expect that forC0,the, where
t is a constant, Hund’s rule coupling will dominate and will
lead to orbital ordering. Indeed after some algebra we find
this condition witht'2.7. This may be written ash.0 and
l,t8eAh, wheret85At/2'0.82 which gives rise to the
phase diagram shown in Fig. 5. This phase diagram is not
quite the same as that found in Ref. 29 for zero temperature.
When we have spin ordering, we may analyze the fourth-
order terms, as is done in Eq.~56!. That analysis shows that
unless the minimum eigenvector has components of equal
magnitude, the anisotropy favors spin ordering along a
(1,1,1) direction. The condition that the eigenvector be
(21,1,1) is thaty1z50. This can only happen whenh
50. Then we have isotropy and the mean-field state exhibits
rotational degeneracy. Otherwise, whenhÞ0, the fourth-
order terms give rise to an anisotropy that orients the stag-
gered spin along a (1,1,1) direction. We should also remind
the reader that fluctuations favor the spin-only state, so that
the phase boundary shown in Fig. 5 will be shifted by fluc-
tuations to larger positiveh. In the regime of orbital order-
ing, we indicate in Appendix F the existence of a sixfold
anisotropy in the variablesa1(Q) anda2(Q), such that the
six equivalent minima correspond to the six possible states
which are obtained by choosingNa51/3 for one coordinate
a, and then occupying the two other orbitals with probability
1/36D.

VI. DISCUSSION AND SUMMARY

The cubic KK model has some very unusual and interest-
ing symmetries, which cause mean-field theory to have some
unusual features. In particular, for the simplest KK Hamil-
tonian, we found that mean-field theory leads to criticality
for the wave-vector-dependent spin susceptibility associated
with orbital a which is dispersionless along theqa direction
of the wave vector. This result is consistent with the previous
observation14 that the Hamiltonian is invariant against an ar-
bitrary rotation of the total spin in the orbitala summed over
all spins in any single plane perpendicular to thea axis. This
‘‘soft mode’’ behavior prevents the development of long-
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range spin order at any nonzero temperature,14 even though
the system is a three-dimensional one.

Any perturbation which destroys this peculiar symmetry
will enable the system to develop long-range spin order. In
particular, we investigate the role of~a! spin-orbit interac-
tions,~b! second-neighbor hopping, and~c! Hund’s rule cou-
pling in stabilizing long-range spin order. In the presence of
spin-orbit interaction we find wave-vector selection~because
now the spin of different orbitals cannot be freely rotated
relative to one another! into a two-sublattice antiferromag-
netic state with a greatly reduced spin magnitude. Since ex-
periment on LaTiO3 shows such a reduction,8 this mecha-
nism may be operative to some extent. However, as noted
previously,14 the excitation spectrum does not have a gap
until further perturbations are also included. The mean-field
solution is consistent with this conclusion, because the mean-
field state which minimizes the trial free energy is degenerate
with respect to a global rotation of the staggered spin. There-
fore, our minimal model cannot be used for a full description
of LaTiO3.

The ordered state which results when nnn hopping is
added to the bare KK Hamiltonian is quite unusual. In this
state, each orbital flavor has a staggered spin moment, but
these three staggered spin moments form a 120° degree state
such that the total staggered spin moment~summed over the
three orbital states! is zero. It is not immediately obvious
how such long-range order would be observed. Finally, we
show that when the bare KK Hamiltonian is perturbed by the
addition of only Hund’s rule coupling, the resulting ordered

state may exhibit long-rangeantiferromagnetic orbitalorder.
One caveat concerning our result should be mentioned.

All our results are based on a stability analysis of the disor-
dered phase. If the ordering transition is a discontinuous one,
our results might not reveal such a transition. In III we will
present results for the temperature dependence of the various
mean-field solutions. Further analysis of the ordered phase is
needed to obtain a phase diagram atT50, as is done in Ref.
29.

It should be emphasized again that all the results in this
paper are based on the assumption that nearest-neighbor
bonds along an axisa are ‘‘inactive,’’ namely, that there is
no direct hopping betweena orbitals along such bonds. Even
within cubic symmetry, such hopping could still exist, alas
with a very small hopping energyt9. However, as soon as we
add such terms, the vertical bond in Fig. 1~b! becomes ac-
tive, and Eqs.~26! and~27! have the additional contributions
Dxaa

2152e9ca and Dxab
2152e9(ca1cb), with e95t92/U.

This introduces dispersion in all directions, and select order

at qW 5QW . Distortions away from the cubic structure can en-
hancet9, and stabilize such order even further.

One general conclusion from our work is that it is not safe
to associate properties of real experimental systems with
properties of a model Hamiltonian unless one is absolutely
sure that the real system is a realization~at least in all im-
portant aspects! of the model Hamiltonian. Here the ideal
cubic KK Hamiltonian has properties which are quite differ-
ent from those observed for LaTiO3, although a naive ap-
proach would be tempted to use this model for such systems.
What this means is that it will be necessary to take into
account effects that one might have been tempted to ignore
in order to identify a model that is truly appropriate for ex-
perimentally realizable systems. Alternatively, perhaps our
work will inspire experimentalists to find systems that are as
close as possible to that of the ideal cubic KK Hamiltonian
treated here. Such systems would have quite striking and
anomalous properties.
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APPENDIX A: HIGHER-ORDER TERMS
IN THE FREE-ENERGY

Here we employ Eqs.~5!, ~6!, and~7! in conjunction with
Eq. ~19!, to derive general expressions for the cubic and
quartic terms of the free energy.

The ‘‘bare’’ cubic terms in the free-energy arise from
Tr@X3#. We find

FIG. 5. The mean-field phase diagram as a function of the spin-
orbit coupling constantl and the Hund’s rule coupling constanth
[JH /U ~which is normally positive!. In the ‘‘spin-only’’ phase for
hÞ0, the staggered moment orients along a (1,1,1) direction, but
the staggered spin moments of different orbital states are not col-
linear, thus reducing the net staggered spin. Forh50, the mean-
field state has rotational degeneracy, so no easy direction of stag-
gered magnetization is selected and the excitation spectrum is
gapless. In the orbital phase one has the sixfold anisotropy associ-
ated with the equivalent choices for differently populating orbital
levels in cubic symmetry, as is discussed in the text.
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Tr@X3~ i !#5(
a ib i

(
r ih i

Tr@cia1r1

† Ya1r1b1h1
~ i !cib1h1

cia2r2

†

3Ya2r2b2h2
~ i !cib2h2

cia3r3

† Ya3r3b3h3
~ i !cib3h3

#

5(
a ir i

@Aa1a2
~ i !dr1r2

1B¢ a1a2
~ i !•s¢ r1r2

#

3@Aa2a3
~ i !dr2r3

1B¢ a2a3
~ i !•s¢ r2r3

#

3@Aa3a1
~ i !dr3r1

1B¢ a3a1
~ i !•s¢ r3r1

#. ~A1!

Making use of the identity~18!, this becomes

Tr@X3~ i !#52(
a i

$Aa1a2
~ i !Aa2a3

~ i !Aa3a1
~ i !

13Aa1a2
~ i !B¢ a2a3

~ i !•B¢ a3a1
~ i !

1 i @B¢ a1a2
~ i !3B¢ a2a3

~ i !•B¢ a3a1
~ i !%. ~A2!

The bare quartic terms in the free energy arise from
Tr@X4#. We find

Tr@X4~ i !#5(
a ib i

(
r ih i

Tr@cia1r1

† Ya1r1b1h1
~ i !cib1h1

cia2r2

† Ya2r2b2h2
~ i !cib2h12

cia3r3

† Ya3r3b3h3
~ i !cib3h3

cia4r4

† Ya4r4b4h4
~ i !cib4h4

#

5(
a i

(
r i

@Aa1a2
~ i !dr1r2

1B¢ a1a2
~ i !•s¢ r1r2

#@Aa2a3
~ i !dr2r3

1B¢ a2a3
~ i !•s¢ r2r3

#@Aa3a4
~ i !dr3r4

1B¢ a3a4
~ i !•s¢ r3r4

#

3@Aa24a1
~ i !dr4r1

1B¢ a4a1
~ i !•s¢ r4r1

#. ~A3!

Again using the identity Eq.~18!, this becomes

Tr@X4~ i !#52(
a i

$@Aa1a2
~ i !Aa2a3

~ i !1B¢ a1a2
~ i !•B¢ a2a3

~ i !#

3@Aa3a4
~ i !Aa4a1

~ i !1B¢ a3a4
~ i !•B¢ a4a1

~ i !#

1@Aa1a2
~ i !B¢ a2a3

~ i !1B¢ a1a2
~ i !Aa2a3

~ i !

1 iB¢ a1a2
~ i !3B¢ a2a3

~ i !#•@Aa3a4
~ i !B¢ a4a1

~ i !

1B¢ a3a4
~ i !Aa4a1

~ i !1 iB¢ a3a4
~ i !3B¢ a4a1

~ i !#%.

~A4!

APPENDIX B: CUBIC FREE-ENERGY TERMS

Referring to Eq.~A2!, the relevant terms for our purpose
come from the second and the third terms there. Working in
Fourier space we hence have

dF52
8e

AN
(
q1q2

(
a1a2a3

@3Aa1a2
~q1!B¢ a2a3

~q2!•B¢ a3a1

3~2q12q2!1 iB¢ a1a2
~q1!

3B¢ a2a3
~q2!•B¢ a3a1

~2q12q2!#. ~B1!

When one of the quantitiesB here acts as the spatially uni-
form field @see Eq.~46!#, this expression becomes

dF52
8e

AN
(

q
(

a1a2a3

@3Aa1a2
~q!B¢ a2a3

•B¢ a3a1
~2q!

13Aa1a2
~q!B¢ a2a3

~2q!•B¢ a3a1
1 iB¢ a1a2

3B¢ a2a3
~q!•B¢ a3a1

~2q!1 iB¢ a1a2
~q!3B¢ a2a3

•B¢ a3a1

3~2q!1 iB¢ a1a2
~q!3B¢ a2a3

~2q!•B¢ a3a1
#, ~B2!

whereB¢ which does not depend onq is the uniform field.
We first consider the terms involving theA’s. Contribu-

tions come froma35a1 @the first term in Eq.~B2!# and
a35a2 ~the second term there!. Hence we find

dFA52
24e

AN
(

q
(
ab

8 Aab~q!B¢ ba•@B¢ aa~2q!1B¢ bb~2q!#,

~B3!

where (ab8 denotes thataÞb. When we minimizeF2

1dFA with respect toAab(q), and use Eqs.~27! and ~46!,
we get the contribution

dFA5272g0
2e(

q
(
abg

eabg
2 @sag~q!1sbg~q!#@sag~2q!

1sbg~2q!#@21cos~qga!#21, ~B4!

where we have defined

sag~q![Baa
g ~q!. ~B5!

Also, since we are interested in the free energy to quadratic
order in the order parameters, we have setkT52e/3.
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In this result we want to keep only contributions which
involve the critical variables. Forsag(q) this means that we
sum overq’s such thatqb5p/a, for bÞa. Thus for each
sag the wave vector sum is a sum over the componentqa ,
with the other components ofq equal top/a. We denote this
type of sum by(qa

. Furthermore for a term involving com-

ponentssag andsbg with differentorbitalsa andb, this sum
reduces to the single wave vectorQ5(p,p,p)/a. So

dFA52144g0
2e (

abg
eabg

2 H(
qa

sag~q!sag~2q!

21cos~qga!

1sag~Q!sbg~Q!J . ~B6!

Here we will set @21cos(qga)#51 because forsag ~with
aÞg) we must haveqg5p/a. This term favors order-
ing at wave vector Q with sa(Q) collinear with
sb(Q), where sa(Q) is a vector with components
@sax(Q),say(Q),saz(Q)#. Similarly, the terms witha25a1

lead to a contributiondFA52144g0
2e@a1

2(Q)1a2
2(Q).

Next we consider the contribution coming from the terms
with three B’s in Eq. ~B2!. Here we put one of the
q-dependentB’s to be diagonal in the orbital indices, to ob-
tain

dFB52 i
24e

AN
(

q
(
ab

8 (
a1b1g

ea1b1gBab
g ~q!@Baa

b1 ~2q!

2Bbb
b1 ~2q!#Bba

a1 . ~B7!

Eliminating the noncriticalBab
g (q) variables by minimizing

F21dFB with respect to them, we get

dFB52576~g0/e!2(
ab

8 (
q

xab~q!@sbb~q!2sab~q!#

3@sbb~2q!2sab~2q!#, ~B8!

wherex is given in Eq.~27!, and we have used the definition
~B5!. As before we separate the sums to be only over critical
wave vectors for each orbital spin vector, in which case we
have

dFB52144g0
2e (

abg
eabg

2 H(
qa

@saa~q!saa~2q!

1sab~q!sab~2q!#22saa~Q!sba~Q!J . ~B9!

Here we noted thatxab(q)5xab(Q)51/(4e) because this
component ofx depends onqg which is alwaysp/a in the
summation over wave vector.

In summary the total contribution to the quadratic free
energy at orderl2 is

F2
(3)5dFA1dFB52C0@a1

2~Q!1a2
2~Q!#

2C0(
abg

eabg
2 H @sag~Q!sbg~Q!22sbb~Q!sab~Q!#

1(
qa

@sag~q!sag~2q!1saa~q!saa~2q!

1sab~q!sab~2q!#J , ~B10!

whereC05144g0
2e.

APPENDIX C: QUARTIC TERMS IN THE FREE ENERGY

Now we look at fourth-order terms. These involve two
critical order parameters and two powers ofl. Therefore, we
pick from Eq.~A4! all terms involving at least two powers of
B. Since two of the factorsB in each term have to beB¢ ab

52B¢ ba , with aÞb @see Eq.~46!# we see that the terms
involving a single power ofA vanish. Thus we have to con-
sider the expression

36kT(
i

(
a1a2
a3a4

@4Aa1a2
Aa2a3

B¢ a3a4
•B¢ a4a1

12Aa1a2
Aa3a4

B¢ a2a3
•B¢ a4a1

1~B¢ a1a2
•B¢ a2a3

!

3~B¢ a3a4
•B¢ a4a1

!2~B¢ a1a2
3B¢ a2a3

!•~B¢ a3a4
3B¢ a4a1

!#,

~C1!

whereA andB are functions of the site indexi. The first two
members of Eq.~C1! are calculated for the case in which the
A’s are critical, and theB’s are given by Eq.~46!. Denoting
their contribution to the self-energy bydF2

(1) , we find

dF2
(1)536kT(

i
(
ab

@4Aaa
2 ~ i !12Aaa~ i !Abb~ i !#B¢ ab•B¢ ba

536kTg0
2(

abg
eabg

2 @4Aaa
2 ~ i !12Aaa~ i !Abb~ i !#

5216kTg0
2(

i
@a1

2~ i !1a2
2~ i !#, ~C2!

where in the last step we have used Eq.~8!.
The contribution of the remaining two members of Eq.

~C1! is denoteddF2
(2) . Here we have to take two of theB’s

as critical, while the other two are given by Eq.~46!. To
shorten notations, we denote here the criticalB as B( i ),
while the noncritical one is simply written asB. We have

dF2
(2)572kT(

i
(
ab

$@B¢ aa~ i !•B¢ aa~ i !#~B¢ ab•B¢ ba!

1@B¢ aa~ i !•B¢ ab#@B¢ aa~ i !•B¢ ba#1@B¢ aa~ i !•B¢ ab#

3@B¢ bb~ i !•B¢ ba#2@B¢ aa~ i !3B¢ ab#•@B¢ bb~ i !3B¢ ba#

1@B¢ aa~ i !3B¢ ab#•@B¢ aa~ i !3B¢ ba#%. ~C3!
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Making again use of Eq.~46!, this expression becomes

dF2
(2)572kTg0

2(
i

(
abg

eabg
2 F2(

n
Baa

n ~ i !Baa
n ~ i !

2(
n

Baa
n ~ i !Bbb

n ~ i !12Baa
g ~ i !Bbb

g ~ i !G . ~C4!

Transforming to Fourier space, noting that only the first term
here containsq while in the other two we must necessarily
haveq5Q ~because they involve simultaneous criticality of
two flavors!, we obtain

dF2
(2)572kTg0

2F4(
q

(
ab

sab~q!sab~2q!

1 (
abg

eabg
2 S 2sag~Q!sbg~Q!

2(
n

san~Q!sbn~Q! D G , ~C5!

where we have used the definition Eq.~B5!. The total con-
tribution to the free energy from quartic terms is then

F2
(4)5dF2

(1)1dF2
(2) . ~C6!

APPENDIX D: MEAN-FIELD THEORY FOR nnn
HOPPING

Starting from Eq.~60!, we may write the perturbation due
to next-nearest neighbors in the form

VKK5
e8

2 (
i j

(
abd

ga~ i , j !(
rh

eabd
2 @cibr

† cidhcj bh
† cj dr

1cibr
† cibhcj dh

† cj dr#. ~D1!

Within our mean-field theory, the averages are taken sepa-
rately on the operators belonging to the sitei, and those
belonging to sitej. The required averages are then given in
Eq. ~16!. The following contribution to the trial energyU is
then

^VKK&5e8(
i j

(
abd

ga~ i , j !eabd
2 @Adb~ i !Adb~ j !

1B¢ db~ i !•B¢ db~ j !1Abb~ i !Add~ j !1B¢ bb~ i !•B¢ dd~ j !#.

~D2!

Transforming to Fourier space, noting that each site has four
next-nearest neighbors in eacha plane, we obtain

^VKK&54e8(
q

(
abd

eabd
2 cbcd@Adb~q!Adb~2q!

1B¢ db~q!•B¢ db~2q!1Abb~q!Add~2q!

1B¢ bb~q!•B¢ dd~2q!#, ~D3!

wherecb5cos(qbq). The result Eq.~D3! is now added to Eq.
~24!, in order to obtain the modifications in the susceptibility
tensor. Specifying to the diagonal order parametersAaa and
B¢ aa , the susceptibility tensor becomes@see Eq.~26!#

x~q!215F 12kT14e~cy1cz! 8e8cxcy 8e8cxcz

8e8cxcy 12kT14e~cx1cz! 8e8cycz

8e8cxcz 8e8cycz 12kT14e~cx1cy!
G . ~D4!

Now we look at the most critical wave vector, which here
is Q. There we have

x~Q!215F 12kT28e 8e8 8e8

8e8 12kT28e 8e8

8e8 8e8 12kT28e
G .

~D5!

We begin with the analysis of the susceptibility tensor of the
spin order parameters, which are given by the elements of
Baa . Then we can use the matrix~D5!. The minimum eigen-
value is

l512kT28e28e8, ~D6!

which gives

kTc52e/312e8/3. ~D7!

Correspondingly, there are two degenerate eigenvectors:

u1&5~0,1,21!/A2, u2&5~2,21,21!/A6. ~D8!

To avoid confusion between orbital and spin labels, we will
here denote the orbital statesx, y, andz by a, b, andc. Then
in terms of normal mode vectorj andr we have the orbital
spin vectors as

sa52
2

A6
r, sb5

1

A6
r1

1

A2
j, sc5

1

A6
r2

1

A2
j

~D9!

with

sa
25

2

3
r2, sb

25
1

2
j21

1

6
r21

1

A3
j•r,
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sc
25

1

2
j21

1

6
r22

1

A3
j•r. ~D10!

Evaluating the fourth-order free energy@see Eq.~41!# rel-
evant to the spin-order parameters, we find

S (
m

sm
2 D 2

2 (
m,n

sm
2 sn

25
3

4
~j21r2!22

1

3
~j3r!2.

~D11!

What we see is that the fourth-order term does not select a
particular direction for order. We have three angles which
describe the degenerate manifold. For a given value ofj2

1r2, we optimize the term (j3r)2 by taking uju5uru and
making j perpendicular tor. So, it takes two angles to
specifyj ~given that its length is fixed! and then we have one
angle to specifyr, given thaturu5uju and it is perpendicular
to j. We now discuss what this choice of order parameters
means for the spin vectors. First note that

sa
25sb

25sg
252j2/3. ~D12!

Also we see that the three orbital spin vectors obey

sa•sb5sa•sc5sb•sc52j2/3. ~D13!

The three vectors each make a 120° angle with each other
and must therefore lie in a single plane. We can fix, say,sa .
This accounts for two angles. Then the other two spin vec-
tors require another angle to tell which plane they lie in.
Note that there is zero net staggered moment. There is long-
range spin order, but not of any simple type.

Next we analyze the susceptibility tensor of the occupa-
tion order parameters, which are given by the elements of
Aaa . Since the matrixAaa is traceless, we use the param-
etrization Eq.~8! to obtain from Eq.~D5! the 232 matrix

xmn~q!215F 12kT1
2e

3
~5cx15cy12cz!1

8e8

3
~cxcy22cycz22czcx!

2e

A3
~cy2cx!1

8e8

A3
cz~cy2cx!

2e

A3
~cy2cx!1

8e8

A3
cz~cy2cx! 12kT12e~cx1cy12cz!28e8cxcy

G .

~D14!

This gives a minimum eigenvalue identical to that of Eq.
~D6!, which yields the same instability temperature as for the
spin-only states. However, in the absence of second-neighbor
coupling, the spin-only states are favored by fluctuations,16

so that choice should be maintained for infinitesimal next-
nearest neighbor hopping.~The situation could change when
the next-nearest neighbor hopping exceed some threshold
value.!

APPENDIX E: DERIVATION OF THE HUND’S RULE
HAMILTONIAN

The Coulomb exchange terms for thet2g states can be
written in the form29

Hcex5
JH

2 (
i

(
ab

aÞb

(
ss8

~cias
† cias8

† cibs8cibs

1cias
† cibs8

† cias8cibs22cias
† cibs8

† cibs8cias!,

~E1!

whereJH is the Hund’s rule coupling. AddingHcex to the
Hamiltonian Eq.~1!, the perturbation expansion in power of
the transfer integralst now contains a term of the order
t2JH /U2, which reads

dHKK5
t2JH

U2 (̂
i j &

(
bgÞ^ i j &

(
ss8

~cigs
† cibscj gs8

† cj bs8

2cigs8
† cibscj gs

† cj bs81cigs
† cibscj bs8

† cj gs8

2cibs8
† cibscj gs

† cj gs822cibs
† cibscj gs8

† cj gs8

12cigs8
† cibscj bs

† cj gs8!. ~E2!

Taking the thermal averages using Eq.~16! we find

^dHKK&5
t2JH

U2 (̂
i j &

(
bgÞ^ i j &

@2Abg~ i !Abg~ j !

18Abg~ i !Agb~ j !210Abb~ i !Agg~ j !

22B¢ bg~ i !•B¢ bg~ j !14B¢ bg~ i !•B¢ gb~ j !

22B¢ bb~ i !•B¢ gg~ j !#, ~E3!

where terms independent of the order parameters were omit-
ted.

APPENDIX F: SIXTH-ORDER ANISOTROPY
IN THE ORBITAL SECTOR

At fourth order, the terms ina1( i ) anda2( i ) are propor-
tional to @a1

2( i )1a2
2( i )#2 @see Eq.~41!#, and there is com-
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plete isotropy ina1-a2 space. However, this isotropy must be
broken in view of the special role played by the directions
along the cubic crystal axes. This symmetry is found in the
sixth-order terms, as we now show. There are several contri-
butions to the free energy at sixth order ina1( i ) anda2( i ),
some of which involve coupling to noncritical variables. To
illustrate the symmetry of these terms we explicitly consider
only the ‘‘direct’’ terms arising from Eq.~19!, from which
we have

dF5a(
i

Tr X6~ i !, ~F1!

wherea is a numerical coefficient timeskT. Thus we write

dF5(
i

TrF (
abrh

ciar
† Aab~ i !dr,hcibhG6

5a(
i

trA6~ i !,

~F2!

where here the trace operation, indicated by ‘‘tr,’’ refers to a
diagonal sum over the indices of the matrixA, as contrasted
to the trace used elsewhere in this paper over the sixt2g
states. Using Eq.~8!, this yields

dF5a(
i

F S a1~ i !1A3a2~ i !

A6
D 6

1S a1~ i !2A3a2~ i !

A6
D 6

1S 22a1~ i !

A6
D 6G . ~F3!

Now, since we are only interested in how this term affects
the critical variables, we may replaceANan( i ) by an(Q),

which we denotean . Then we may write

dF5
a

36N2 $10@a1
21a2

2#31a1
6215a1

4a2
2115a1

2a2
42a2

6%.

~F4!

To clarify the anisotropy of this form we seta15r cosuq and
a25r sinuq , in which case

dF5
ar6

36N2 @101cos~6uq!#. ~F5!

This free energy has minima at the anglesuq5p/21np/3,
for n50,1, . . . ,5. These correspond toa152r sin(np/3)
and a25r cos(np/3). For n50, only a2 is nonzero. From
Eqs.~12! one sees that this corresponds to^Nz( i )&51/3, and
havingNx( i )2Ny( i ) oscillate at wave vectorQ with an am-
plitude proportional tor. By similarly analyzing the other
minima, one concludes that these six minima correspond to
the six ways one can chose indices so that^Na( i )&51/3 and
^Nb( i )2Ng( i )& oscillate at wave vectorQ. ~There are three
ways to choosea and two ways to fix the phase of the orbital
density wave.! However, additional contributions to the free
energy might make the coefficient of the cosine term in Eq.
~F5! negative, in which case the minima occur foruq
5np/3. Now for n50 only a1 is nonzero, and, from Eqs.
~12!, this corresponds toNx( i )5Ny( i )5 1

3 1d( i ), and
Nz( i )5 1

3 22d( i ), whered( i ) oscillates at wave vectorQ.
The other minima correspond to cyclic permutations of co-
ordinate axes consistent with cubic symmetry.
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