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Landau Expansion for the Kugel-Khomskii b Hamiltonian

Abstract

The Kugel-Khomskii (KK) Hamiltonian describes spin and orbital superexchange interactions between d'
ions in an ideal cubic perovskite structure, in which the three t5; orbitals are degenerate in energy and electron
hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-
field theory in which each site i has its own nxn single-site density matrix p(i), where n, the number of allowed
single-particle states, is 6 (3 orbital times 2 spin states). The variational free energy from this 35 parameter
density matrix is shown to exhibit the unusual symmetries noted previously, which lead to a wave-vector-
dependent susceptibility for spins in a orbitals which is dispersionless in the g4 direction. Thus, for the cubic
KK model itself, mean-field theory does not provide wavevector “selection,” in agreement with rigorous
symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions
are introduced, the susceptibility has dispersion in all directions in q space, but the resulting antiferromagnetic
mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave
spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments.
When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of
these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect
of a Hund’s rule coupling of sufficient strength is to produce a state with orbital order.
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The Kugel-Khomskii(KK) Hamiltonian describes spin and orbital superexchange interactions betiveen
ions in an ideal cubic perovskite structure, in which the thggerbitals are degenerate in energy and electron
hopping is constrained by cubic site symmetry. In this paper we implement a variational approach to mean-field
theory in which each sitehas its ownnx< n single-site density matrip(i), wheren, the number of allowed
single-particle states, is @ orbital times 2 spin statgsThe variational free energy from this 35 parameter
density matrix is shown to exhibit the unusual symmetries noted previously, which lead to a wave-vector-
dependent susceptibility for spins énorbitals which is dispersionless in tlgg direction. Thus, for the cubic
KK model itself, mean-field theory does not provide wavevector “selection,” in agreement with rigorous
symmetry arguments. We consider the effect of including various perturbations. When spin-orbit interactions
are introduced, the susceptibility has dispersion in all directiomgspace, but the resulting antiferromagnetic
mean-field state is degenerate with respect to global rotation of the staggered spin, implying that the spin-wave
spectrum is gapless. This possibly surprising conclusion is also consistent with rigorous symmetry arguments.
When next-nearest-neighbor hopping is included, staggered moments of all orbitals appear, but the sum of
these moments is zero, yielding an exotic state with long-range order without long-range spin order. The effect
of a Hund'’s rule coupling of sufficient strength is to produce a state with orbital order.

DOI: 10.1103/PhysRevB.69.094409 PACS nuntder75.10—-b, 71.27+a, 75.30.Et, 75.30.Gw

[. INTRODUCTION systematic study of the cubic model, with several symmetry-
breaking perturbations, and discuss several interesting and
High-temperature  superconductivity and  colossal unusual possible types of order which arise. In the process
magnetoresistanééave sparked much recent interest in thewe also explain why this minimal model cannot be used to
magnetic properties of transition-metal oxides, particularlyexplain the observed behavior of La®O
those with orbital degeneracy.In many transition-metal ox- In the idealized cubic model, there is odielectron in the
ides, thed electrons are localized due to the very large on-t,; degenerate manifold, which contains the wave functions
site Coulomb interactiot. In cubic oxide perovskites, the [X)=d,,, |Y)=d,,, and|Z)=d,,. Following Kugel and
crystal field of the surrounding oxygen octahedra splitsthe Khomskii (KK),** one starts from a Hubbard model with
orbitals into a twofold degeneratg and a threefold degen- on-site Coulomb energy and nearest-neighbdnn) hop-
eratet,, manifold. In most cases, these degeneracies are fuping energyt. For largeU, this model can be reduced to an
ther lifted by a cooperative Jahn-TellgIT) distortion® and  effective superexchange model, which involves only nn spin
the low-energy physics is well described by an effective suand orbital coupling, with energies of ordert%U. This
perexchange spin-only mod&l’ However, some perovs- low-energy model has been the basis for several theoretical
kites, such as LaTiQ®° do not undergo a significant JT studies of the titanates. In particular, it has been sugg®sted
distortion, in spite of the orbital degenerad®fif these dis- that the KK Hamiltonian gives rise to an ordered isotropic
tortions were really small, then one might need to considespin phase, and that an energy gap in the spin excitations can
not only the spin degrees of freedom but also the degeneratee caused by spin-orbit interactiohisHowever, these papers
orbital degrees of freedoff"** The large degeneracy of the are based on assumptions and approximations which are hard
resulting ground states may then yield rich phase diagram$p assess. Recentfy(this will be referred to as)Iwe have
with exotic types of order, involving a strong interplay be- presented rigorous symmetry arguments which show several
tween the spin and orbital sectdr®® The study of the ide- unusual symmetries of the cubic KK Hamiltonian. Perhaps
alized cubic model thus has two major motivations: on onghe most striking symmetry is the rotational invariance of the
hand, this is a very interesting theoretical model, which cariotal spin of« orbitals(wherea=X, Y, or Z) summed over
exhibit novel phases and help in understanding the systen&ll sites in a plane perpendicular to theaxis. This symme-
atics of the competition between orbital and spin order. Oriry implies that in the disordered phase the wave-vector-
the other hand, this model might serve as a “minimal” start-dependent spin susceptibility ferorbitals, x,(q), is disper-
ing model for the study of realistic systems, like LafiOn  sionless in theg, direction. In addition, as discussed in I,
this paper we adopt mainly the first motivation: We present ahis symmetry implies that the system does not support long-
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range spin order at any nonzero temperature. Thus the ideahrough a critical value have dispersionless directions, so that

ized cubic KK model is an inappropriate starting point to unusually mean-field theory provides no “wave vector selec-

describe the properties of LaTiOThis peculiar rotational tion” at the mean-field transition. In Sec. IV we discuss the

invariance depends on the special symmetry of the hoppingandau expansion at quartic order. In Sec. V we treat several

matrix element, and it can be broken by almost any perturlower symmetry perturbations, namely, spin-orbit interac-

bation such as rotation of the oxygen octahedra. Here wéOns, nnn hopping, and Hund's rule coupling. In each of

consider the effect of symmetry-breaking perturbations dudh€se cases “wave vector selection” leads to the usual two-

to (a) spin-orbit interactions(b) next-nearest-neighbgnnn) sublattice structure, but thg quqlltatwe_ nature of ordering de-

hopping, andc) Hund's rule coupling. According to the gen- pends on which perturbatlpn is c.ons'lder'ed.' In Sec. VI we

eral symmetry argument of I, although long-range order afummarize our work and discuss its implications.

nonzero temperature is possible when spin-orbit interactions

are included, the system still possesses enough rotation sym-

metry that the excitation spectrum should be gapléBsis Il. THE HAMILTONIAN

conclusion is perhaps surprising because once spin-orbit in-

teractions are included, the system might be expected to di%—n

Ell_r;]gwsh directions '{3'?‘“"? t?‘ those defflr}zdhby the .Il?tllce' are split into arey doublet at high energy andtg, triplet at
Is argument would imply that mean-field theory will pro- |, energy. Following the seminal work of KK, we de-

duce a state which has a continuous degeneracy associated. . .
with global rotation of the spins. The purpose of this paper i;&,dnbe this system by a Hubbard Hamiltonif of the form

to implement mean-field theory and to interpret the results
obtained therefrom in light of the general symmetry argu-

The system we treat is a simple cubic lattice of ions with
ed electron per ion in @ band whose five orbital states

ments. We will carry out this analysis using the variational Hu= 20 €aCluoCiaot 2 2 taplisi)ClauCipo

properties of the density matrix. In a separate pap@vrhich fac (i) apo

we will refer to as lll, the present paper being papemk

will study the self-consistent equations of mean-field theory U D> D CiTwCiaaCrgngiﬁa' , (1)
I

which contain information equivalent to what we obtain as<p gq!
here, but in a form which is better suited to a study of the
ordered phase. Here our analysis is carried out for the cubic t ) ) ] )
KK Hamiltonian with and without the inclusion of the Wherec;,, creates an electron in the orbital labetedh spin
symmetry-breaking perturbations mentioned above. In thétateo on sitei, €, is the crystal-field energy of the or-
presence of spin-orbit interactions we find that the staggerefital, t,z(i.j) is the matrix element for hopping between
moments of different orbital states are not collinear, so tha@rbital a of sitei and orbital g of sitej, and(ij) indicates
the net spin moment is greatly reduced from its spin-onlythat the sum is over pairs of nearest-neighboring sitesd]
value. The effect of nnn hopping is also interesting. Withinon & simple cubic lattice. It is convenient to refer to the
mean-field theory, this perturbation was found to stabilize rbital state of an electron as its “flavor.” In this terminology
state having long-range staggered spin order for each orbit&l .., creates an electron of flaver andz component of spin
state, but the staggered spins of the three orbital states add ¢oon sitei. Initially we consider the case when the Coulomb
zero. When only Hund’s rule coupling is included, mean-interaction does not depend on which orbitals the electrons
field theory predicts stabilization of long-range spin and or-are in. In a later section we will consider the effects of
bital order. However, elsewhéfewe show that fluctuations Hund's-rule coupling. In a cubic crystal field, the crystal-
favor spin-only order. As a result, a state with long-rangefield energye, splits the five orbitald states into a low-
order of both spin and orbital degrees of freedom can onlyenergy triplet, whose states adg,=X, d,, =Y, and d,,
occur when the strength of the Hund'’s rule coupling exceeds=Z, and a high-energy doublet, whose presence is ignored.
some critical value which we cannot estimate in the presenin this model it is assumed that hopping occurs only between
formalism. As stated, LaTiQdoes not exhibit any of the nearest neighbors and proceeds via superexchange through
exotic structures found here. Its real structure probably supan intervening oxygep orbital, so that the symmetry of the
ports a nondegenerate singlg state per Ti ion, and there- hopping matrix is that illustrated in Fig. 1. Thts; is zero if
fore a simple antiferromagnetic spin structdfedowever, a# B andt,,(i,j)=t, except that,,(i,j) vanishes if the
our general discussion may still apply to otifget unknown  bond(ij) is parallel to thex axis!* The « axis is called® the
perovskites, and the new structures are certainly of generahactive axis for hopping betwees orbitals. Whent<U,
theoretical interest. KK reduced the above Hubbard Hamiltonian to an effective
Briefly this paper is organized as follows. In Sec. Il we Hamiltonian for the manifold of states for which each site
discuss the KK Hamiltonian and fix the notation we will use. has one electron in g orbital state. We will call this low-
In Sec. lll we discuss the construction of the mean-field trialenergy Hamiltonian the KK Hamiltonian and it can be re-
density matrix as the product of single-site density matricesgarded as a many-band generalization of the Heisenberg
each of which acts on the space of six one-electron states éfamiltonian. The KK Hamiltonian is often written in terms
an ion, and whose parametrization therefore requires 35 paf spin variables to make the analogy with the Heisenberg
rameters. Here we show that the wave-vector-dependent spmodel more apparent, but for our purposes it is more conve-
susceptibilities which diverge as the temperature is loweredient to write the(KK) Hamiltonian in the form
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LANDAU EXPANSION FOR THE KUGEL-KHOMSKII t5 . . .

FIG. 1. A schematic view of thé&Z)=d,, orbitals and thein-
direct) hopping parametet via intermediate oxygerp orbitals.

Positive (negative regions of wave functions are represented by

dark (light) lobes. In(a) we show that the hopping matrix elements
between orbitals of different flavors are zero.(b) we show that
there is no indirect hopping along tlzexis for an electron in th&
orbital, due to symmetry.

T T
i87C1v0CiypCiBn

HKKsz E c

(1) By#(ij) =np

€ > 2 QurnpQupi), (2

(1) By#(ij) =np

wheree=2t%/U and the notation8y+(ij) indicates that in

the sum oveB and y neither of these are allowed to be the

same as the coordinate direction of the bdijd.

PHYSICAL REVIEW B 69, 094409 (2004

ized KK model. Therefore it is worthwhile investigating
what form of long-range order results when possible symme-
try breaking perturbations are included. Although the mean-
field results we obtain below should not be taken quantita-
tively, they may form a qualitative guide to the type of
ordering one might expect for more realistic extensions of
the above KK model. We also nofetf that even when spin-
orbit coupling is included, the Hamiltonian has sufficient
symmetry that the spin-wave spectrum remains gapless. As a
result, the gap observBdn the excitation spectrum of
LaTiO5 cannot be explained on the basis of the KK Hamil-
tonian with only the spin-orbit interaction as a perturbation.
As we shall see, these symmetries are realized by the mean-
field solutions we obtain.

IIl. LANDAU EXPANSION AT QUADRATIC ORDER

We will develop the Landau expansion of the free energy
as a multivariable expansion in powers of the full set of order
parameters necessary to describe the free energy arising from
the KK Hamiltonian. In this section we construct this expan-
sion up to quadratic order in these order parameters and
thereby analyze the instability of the disordered phase rela-
tive to arbitrary types of long-range order. In later sections
we discuss how this picture is modified by higher-order
terms in the expansion, and by the addition of various
symmetry-breaking terms into the Hamiltonian.

A. Parametrizing the density matrix

The version of mean-field theory which we will imple-
ment is based on the variational principle according to which
the exact free energy is obtained by minimizing the free-
energy functionaF (p) as a function of the trial density ma-
trix p, which must be Hermitian, have no negative eigenval-
ues, and be normalized by pr=1. Here the trial free energy
is

F(p)=Ti p(H+kTInp)], ()

where the first term is the trial energy and the second is
—T times the trial entropy, wher@ is the temperature.
Mean-field theory is obtained by the ansatz tipats the
product of single-site density matricgs{i):

Previously* we pointed out several unusual symmetries

of this Hamiltonian. By anx plane we mean any plane per-
pendicular to theax axis (which is the inactive axis fow

hopping. In | we showed that the total number of electrons

in an « plane which are irx orbitals is constant. In addition,
the total spin vectofas well as itsz component summed
over all electrons ine orbitals in any givena plane was

p=11 p(), @
and F(p) is then minimized with respect to the variables

used to parametrize the density matgXi). Sincep(i) acts
in the space of,, states of one electron, it is a6 dimen-

shown to be a good quantum number. The fact that one ca¥ional Hermitian matrix with unit trace.

rotate the spin of al electrons(these are electrons ia

The most general trial density matr{for site i) can be

orbital$ in any a plane at no cost in energy implies that Written in the form

there is no long-range spin order
temperaturé? Nevertheless, since experim&rghows that

LaTiO; does exhibit long-range spin order, it must be that

at any nonzero

1 .
=T+ X(i),

- ®)

p(i)

spin ordering is caused by some, possibly small, symmetry-
breaking perturbation, which should be added to the idealwhere
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) + ) Similarly, the diagonal matrix elements &?(i),B (i),
X('):E 2 CiapYappn(1)Cigy (6) give the thermal expectation value of theeomponent of the
ap pn . . A
spin of a-flavor of theith electron,S, (i):
with

Yapﬂn(i)zAaﬁ(i)ﬁpn+ éaﬁ(i)'&pn' (7) <Say(|)> 2 <C|a0' o’7]cla77> ZB (I) (15)

Here o is the Pauli matrix vector, and\,45(i), Big(i),

B(') and Bzﬁ(l) are 3x3 Hermitian matrices, of which The off-diagonal matrix elements &7(i) are related to the
the first is traceless. The diagonal terms of the mafriare  order-parameters associated with correlated ordering of spins
parametrized for later convenience as and orbits.

In general, the density matrix E(p) yields the average

()_al(l) ap(i) A, (i):al_(i)_az_(i)
\/— \/— \/E \/E <Qa<f B'r](l)> <C|mrcl,67/> aﬁﬁtrn
Azz(i)z_Axx(i)_Ayy(i)v (8)
such that +Tr

2 Ci-’.ao'ciﬂnci‘ra'p[Aa’ﬂ’(i)5;)7-
a!B!
2 2 pT
AL+ AL (1) + AL fi)=ad(i) +aj(i),
_ , _ , , +B, (i) - 0,]Ci 4,
—AZ (1) - A2 (i) +2AZ i) =ad(i)—a5(i). 9) A pri1B ]
For any operato©(i) associated with sitewe define . - -
yop () = 830 65 Aga(i) 80+ Bali)- 6,
(O(i))=TrLO(i)p], (10 (16)
where Tr denotes a trace over the six stdiesr) of the
atom at sitei with a singlet,4 electron. Then the diagonal B. Construction of the trial free energy

matrix elements ofA(i) give the occupations of orbital

states, Using the result Eq(16), we get the trial energy) as

1
<Na<i>>=<2clwc.w>—§+2Am<i>, (11) U=e> 2 2 (QpypplNQypipy())
- (1) By#ii) =p

which may be related to the matrix elements of the angular

momentum., =2 > [Aup(i)Ag(i)+Bap(i)-Baali)],
(i]) aB#(ij)
-1 (17)
<T> (Ny(i))= 3 \/—a1(|)+ V2ay(i),
where we have used the identity
La(i)—-1 >
N()— a()fa() .. ..
< < yU ) 3 \/— 11 21 pEz (Balaz'Uplpz)(B“zaa'gpzps)
< Sh > (NA)=5—auli). (12 = By BuaeaPhuoa 1 Prspa Bge Bgey
6 (18

The off-diagonal matrix elements &f(i) are ) )
Here and below we drop terms independent of the trial order
parameters.

<Ly(')>—'% 2(;4 (ClaoCipo) €apy= _2'%; Agall) €apy, Using Eq.(5) we write the trial entropy as
(13
wheree,, is the fully antisymmetric tensor. Similarly, —TS= kTE Tr[3X2(i)—6X3(i) + 18X4(i)+ - - -],
i

(19)
(L)L, (D +L,(DLg(01))==32 (Cl5,Cip0+CleCigo)

where we noted that Dt(i)=0. The second-order contribu-
=—6[Ag(i)+A,z(1)]. (14  tionis found from
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TX3(i)]= EB > Tl Yapey(i)Cis, Xap(D=1KT+2e2 e 9Rm(1-5p 22)(1- 3, a3),
@ np
a'B" n'p’ " (25
i : . . A
X Cia’p’Ya’p’B’n’(l )Cigr ] whereR,,, is a vector to a nearest-neighbor site, ant the
unit vector in thea direction. We hence see that we have
=> >, ar(DY goap(i) only two kinds of inverse susceptibilities, the one for the
ap a7 e diagonal elements, namely,
=22ﬁ [Aup()Asali) +Bop(i) - Bali)]. oNQ)=1KkT+26> e 19Rm(1— 8, o)
@ Rnn nn’
(20)
=12kT+2€, €45,(Cp+Cy), (26)
At quadratic order the trial free enerdy=F,, is thus By

and the second for the off-diagonal matrix elements, namely,

Famr S S o) Ag(DAga(i) + Bug(l) - Baa
2_2 T Xaﬁ(lij)[ a/}(l) Ba(]) aﬂ(l)' Ba(J)]! _1 Zia.R
) 2D Xap()=1KT+2e2, e '9Fm(1-3p 0i= 6, a3)

where the inverse susceptibility is given by _ 12(_”462 Eiﬂycy' (27
Xap(L0) =12KT 8+ 2€7(1- 6 (1= 8 p). (22 ’
wherec,=c0s(Q,8).

Here y;; is unity if sitesi andj are nearest neighbors and is At high temperature all the eigenvalues of the susceptibil-
zero otherwise, andj; , is unity if the bond(ij ) is along the ity matrix are finite and positive. As the temperature is re-
« direction and is zero otherwise. duced, one or more eigenvalues may become zero, corre-
sponding to an infinite susceptibility. Usually this instability
will occur at some value of wave vect@r more precisely at
- ) ) the star of some wave vecjprand this set of wave vectors

We now carry out a stability analysis of the disorderedgescribes the periodicity of the ordered phase near the order-
phase. At quadratic order in the Landau expansion, possibigg transition. This phenomenon is referred to as “wave-
phase transitions from the disordered phase to a phase Wi{factor selection.” In addition, and we will later see several
long-range order are signaled by the divergence of a suscepxamples of this, the eigenvector associated with the diver-
tibility. Depending on the higher-than-quadratic order termsyent susceptibility contains information on the qualitative na-
in the Landau expansion, such a transition nt@ymay nol e of the ordering. Here, a central question which the ei-
be preempted by a first-ordediscontinuous phase transi-  genyector addresses is whether the ordering is in the spin
tion. So mean-field theory is a simple and usually effectivesacior, the orbital sector, or both sectors. If the unstable ei-
way to predict the nature of the ordered phase in systemgenvector is degenerate, one can usually determine the sym-
where it may not be easy to guess it. To implement the stametries which give rise to Goldstorigapless excitations.
bility analysis we diagonalize the inverse susceptibility ma-\we will meet this situation in connection with our treatment
trix by going to Fourier transformed variables, whose generig¢ spin-orbit interactions.In the present case, we see from

C. Stability analysis: Wave-vector selection

definition is Egs. (26) and (27) that the instabilitieswhere an inverse
susceptibility vanishesfirst appear akT=2¢/3 for the di-
1 —iger; agonal susceptibilities. Consider first the susceptibilities for
Fla)= N4 F(re ™0, unequal occupations of the three orbital states. Making use
of Egs.(8) and(26), we write
1 ig-r; -1
F(ri)=\/—N % F(qe'®', (23) 2 X DAL DA (— ) =[a1(a)ax(q) ]xn(a)
whereN is the total number of lattice sites. Then the free a;(—q) 08
energy at quadratic order I5,=2F,(q), where X a(—q)|’ (28)
1 with the 2<2 susceptibility matrixy, given by
Fo=3 2 2, Xap( @[ Aus(DAge( Q) ,
«a €
X . Xn 11(@) = 12KT+ — (5¢,+5¢,+2¢,), (29
+Bap(d)-Bga(—0)] (24)
with Xn7dd)=12KT+2€(CytCy+2¢,),

094409-5
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A B have been found in a variety of modéfs?? of which per-
haps the most celebrated is that in the kagomend
! pyrochloré* systems. In almost all cases, the dispersionless
| susceptibility is an artifact of mean-field theory and does not
; A represent a true symmetry of the full Hamiltonian. In such a
T case, the continuous degeneracy is lifted by fluctuations,
! which can either be thermal fluctuatidisor quantum
| fluctuations’® Here we have a rather unusual case in that the
A A spin susceptibility has a dispersionless directiparallel to
, B the inactive axiswhich is the result of an exact true sym-
y metry of the quantum Hamiltonian which persists even in the
’ presence of thermal and quantum fluctuations.

A B

FIG. 2. The two sublattice G” state which consists of two IV. LANDAU EXPANSION AT QUARTIC ORDER
interpenetrating simple cubic lattices on each site of which the ions
are in a given state, eithéy or B.

To discuss the nature of the ordered state one may con-
sider the self-consistent equations for the nonzero order pa-
rameters which appear below the ordering temperature at
1 1 2e kT.=2€/3 and this is done in Ill. However, the types of
Xn 1A @)= Xn21(Q) = ﬁ(cy—cx). possible ordering should also be apparent from the form of
the anisotropy of the free energy in order-parameter space
The instability occurs for both eigenvalues of the inversewhich first occurs in terms in the free energy which are quar-
susceptibility matrixx;}m(q), but only when the wave vec- tic in the order parameters. In principle, long-range order is
tor g assumes its antiferromagnetic val@@=(m,7,7)/a  only possible when we add to the Hamiltonian terms which
which leads to a two sublattice structuisee Fig. 2 called destroy the symmetry whereby one can rotate arbitrarily
the “G” state. The twofold degeneracy is the symmetry as-planes of spins associated with a given orbital flavor. In the
sociated with rotations in occupation number spakg), following section we study several perturbations which sta-
(Ny), and(N,) with the constraint that the sum of these bilize long-range order. Although the nature of the ordering
occupation numbers is unityAt quadratic order we do not depends on the perturbation, generically the resulting disper-
yet feel the discrete cubic symmetry of the orbital statles.  sion due to this symmetry-breaking perturbation stabilizes
contrast, the inverse spin susceptibility® of Eq.(26) has a  the G structure, so that the instabilities are confined to the
flat branch so that it vanishes faif = 2¢/3 for any value of ~Wwave vectorg=Q. In this section we implicitly assume this
d,, when the two other components@fissume the antifer- Scenario.
romagnetic valuer/a. This wave vector dependence indi- Accordingly, we now evaluate all terms in the free energy
cates that correlations in the spin susceptibility become longrhich involve four powers of the critical variablé, ,(Q)
ranged in anx plane, but differenty planes are completely andA,,(Q) at the wave vector associated with the assumed
uncorrelated. Note that beyond the fact that there is no wavevo sublattice, orG, structure. These terms arise from two
vector selection in the spin susceptibility, one has completenechanisms. The first contribution, which we denbf#’,
rotational invariance iB? (q) for the components labeled arises from “bare” quartic terms in Eq19). The second
by y independently for each orbital labeleg. This result type of contribution arises indirectly througk®(i) in Eg.
reflects the exact symmetry of the Hamiltonian with respect19). There we have contributions to the free energy which
to rotation of the total spin in the orbital summed over all involve two critical variables and one noncritical variable
spins in any singler planel* If we restrict attention to th&  (evaluated at zero wave vectoWhen the free energy is
wave vectorg=Q, we have complete rotational degeneracyminimized with respect to this noncritical variable, we obtain
in the 11 dimensional space consisting of the rjg,(Q) contributions to the free energy which are quartic in the criti-
spin-orbit order parameters and the tei{Q) orbital occu-  cal order parameters and which we denfe’.
pational order parameters. Thus at this level of approxima-
tion, we haveO(11) symmetry. Most of this symmetry only A. Bare quartic terms, F{¥

holds at quadratic order in mean-field theory. As usual, we The bare quartic terms are obtained from E&4), by

expect that fourth(and higher order terms in the Landau I ; .
. . ) S . . : aking into account only diagonal matrix elements of the
expansion will generate anisotropies in this 11—d|men3|onaﬁ

space to lower the symmetry to the actual cubic symmetry ofnatricesA andB. Since the fourth-order term of the entropy
the system. As we will see, the anisotropy which inhibits the!S Multiplied by 1&T [see Eq.(19)] and we can safely put
mixing of spin and orbit degrees of freedom is not generatedere 1&T=12¢, we find that the bare quartic terms are
by the quartic terms in the free energy. Perhaps unexpectedigiven by

as we show elsewhetéthis anisotropy is only generated by

fluctuations not accessible to mean-field theory. SONPYH A% (1)+6AZ (1)s2(i)+s(i
Dispersionless branches of order-parameter susceptibili- 4 2 ; [AaalD) aa)Sa(1)FSa(1)],
ties which lead to an infinite degeneracy of mean-field states, (30
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where we have denoted 1
Au(0)= ——=(2A2 + 252~ A2 —s2— A2 —s?),
S2(1)=[BX () J2+[BY () P+[BL,()]2.  (31) S-S

Introducing Fourier transformed variables via E83) we ) s 2 o o
thereby obtain terms quartic in the critical order parameters ~ Ayy(0)= m(ZAyﬁ' 28— A= Sy — A S)),
as

A A0)= _Axx(o)_Ayy(O)- (38)

F_ 2% > [AL +6A% s%+s? (32 - - - buti
4 TN < [Asa aaSatSal, Inserting these values into E¢B7) yields the contribution
F to the free energy
where now all order parameters are to be evaluated at wave 22 15
vectorQ. Using for the matrix elements & the parametri- @)__ <€ 2 2 <€ 2 2,2
zation Eq.(8), we find Fa N Z, AcaSa N Z, (AatS2)

€ — (A2 +52)(AZ +52)— (A2 +52) (A2 +52)
F24)=N{12(a§+a§)2+48\/§a1az(s§—s§) Y ey e

—(AZ+S2) (AL +SD) |, (39)

+48(al+a3)(si+ S5+ S0) + 24(sy+ sy +S7)
—24(ai—a§)(s)2(+ 55_253)}_ (33) which, upon inserting the parametrizati@®) becomes

> s
o

—36\3a,ay(si— %) — 24(aZ+aj) (st +s2+s2)

2

€
FE‘S):N[ ~12 +362B sis5—3(aj+aj)?

B. Induced quartic terms, F ¥

To obtain the terms of this type, we first take from Eq.
(A2) all the terms having diagonal matrix elements. Multi-
plying them by—6kT= —4¢ [see Eq(19)], we have
+18(a§—a§)(s§+s§—25§)}. (40)

V3= =862 [AS(1)+3Au0(1)Bua(i)- Buali)]. (34
“ C. Total fourth-order anisotropy
Next we insert here the Fourier t_ransforms. The critical vari- Adding ng) andF®  we find F, as
ables we treat here are the Fourier components at wave vec-
tor Q=(m,m,m)/a. When the wave vector iQ, it will be € 2
left implicit. We indicate explicitly only those variables taken F4:N( 12( > si) —122 sisi+9(a+aj)?
at zero wave vector. Thevi; is given by “ *<p

24¢ s . s ) +24(a2+a3) >, si+12\3a;a,[s;—s7]
Vs D [Aual0)(AZ +52)+2B,,4(0)- BouAsal, @

(39 —6(aj—aj)[si+s;— 255]], (41)
where we have used E@1). _
We now eliminate the noncritical variables at zero wavewhere all variables are evaluated at wave veQoAs men-

vector by minimizing the free energy with respect to them.tioned above, the anisotropy of this form determines the na-
We note that all the noncritical zero wave vector variabledure of the mean-field states of the ideal KK Hamiltonian. We

have the same susceptibility will give a complete analysis of the symmetry and conse-
quences of this fourth-order anisotropy in paper lll. Here we
x(0)=(12kT+8¢) *=(16¢)?, (36) Wil use this form to determine the nature of possible ordered
states in the presence of symmetry-breaking perturbations
and therefore the function to minimize is such as the spin-orbit interaction.

v3=V3+862 [Aia(0)+ éaa(o)'éaa(o)]- 37) V. SYMMETRY-BREAKING PERTURBATIONS

As we have just seen, the idealized KK model considered

The minimization procedure, allowing for the constraint2P0Ve has sufficient symmetry that there is no wave vector
3 A,.(0)=0 yields selec;tloﬁ within mean-field theory and the exact symmetry

of this model does not support long-range order at nonzero

3 temperature. In this section we consider the effects of various

BY,(0)=—BY A,., additional perturbations which are inevitably present, even

\/N when there is no distortion from perfect cubic symmetry. We
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consider in turn the effects dfa) spin-orbit coupling,(b)
further neighbor hopping, an@) Hund’s rule or Coulomb
exchange coupling. Here we dwt assume that the long-
range order only involves the wave vectrof the G struc-

PHYSICAL REVIEW B 69, 094409 (2004

N2y, ;. By modifying the terms quadratic in the critical
order parameters we will obtain a free energy without a dis-
persionless branch of the susceptibility, and therefore the
spin-orbit perturbation will lead to wave vector selection.

ture. In other words our first objective is to see how these Terms of ordei 2y, ; inthe free energy arise from either

various perturbations lead td they do) wave vector selec-
tion and what types of ordering result.

A. Spin-orbit interactions

We first consider the effect of including spin-orbit inter-
actions, since these interactions destroy the peculiar invar
ance with respect to rotating planes of spins of different or
bital flavors independently. Below we see that the addition o

spin-orbit coupling leads to a wave vector selection from the
susceptibility, which previously had a dispersionless axis in

bare fourth-order terms or indirectly from cubic terms. Here
we describe these contributions qualitatively. The explicit
calculations are given in Appendixes B and C. We first con-
sider contributions arising from the third-order terms. Note
that the spin-orbit perturbatiovigg acts like a “field” in that
it couples linearly to the order parame®};(q=0), as one

Can see from Eq(45). Minimization with respect to this

Prder parameter yields

A

BYs(4=0)=— z-NYXBIL | @)=iN""goe,p,, (46)

aBy:

the absence of such a perturbation. Indeed, a plausible guess

is that the system will select the wave vectQrto allow
simultaneous condensation of spins of all three orbitals.
We write the spin-orbit interactiol'sg as

Vsor\S 3 S (all Bl il o) @2
where
(alL,|B)=—i€nyp, (43

and\ is the spin-orbit coupling constant. We now incorpo-
rate this perturbation into the mean-field treatment. The ex
pression for the entropy does not need to be changed. T
trial energy involves Tip(i)Vso] and generates a perturba-
tive contribution to the free energy which is

5F=2)\§i: % BZs()(BIL,|a). (44)

aBy

In terms of Fourier transformed variables this is
é>‘F=2>\N1’2%7 BYs(a=0)(BIL,|a). (45)

where go=A/(6€) and we noted that the nondiagonal in-
verse susceptibilityX;L}(O) is 12 at kT=2¢€/3 [see Eq.
(27)]. In other words, we have the spatially uniform displace-
ment,B (i) =igo€,p,, Which is linear in\. Now consider
third-order terms in the free energy which are schematically
of the form

oF=aB}5(q=0)¢iX;, (47)

wherea is a constant, ang; is a noncritical variable, so that
its susceptibilityy; is finite at T.. After minimizing with
respect tax;, we obtain a contribution to the free energy of
oerzder— (1/2))_(ja2_[B;B(g=0)]_2¢i2, which is a term of order
iy (albeit withi=j). This perturbative contribution to
the free energy quadratic in the critical variables will be de-
noted F$¥). Note that these cubic ternisee Eq.(47)] are
identified as being linear ia) Bgﬁ; in (b) a critical order
parametew); , such as,,(q,) (by this we mearB,,,, evalu-
ated for a wave vector on its soft liper A, ,(Q), and in(c)
some noncritical order parameter. Terms of orxf@; ¥; can
also come from bare fourth-order terms which are products
of two powers ofB} ;(q=0) with two critical variables and

these contributions are denot&g® . All these terms will

Thus the spin-orbit interaction appears as a field acting off’en 1ead to modifications of the terms in the free energy

the noncritical order parametéraﬁ(q:O), with a# 8.

We now calculate the perturbative effect of the spin-orbit
interaction. Because the perturbatidg is the only term in
the Hamiltonian that causes a transition from one orbital t
another, the leading perturbation to the free energy will be o
order \?. We develop an expansion at temperatures infini
tesimally belowT .= 2¢/(3Kk) in powers ofx and{}, where
{y} denotes the set of variables which, in the absence
spin-orbit coupling, are critical at the highest temperature
namely, KT=2¢/3. This set includeB? (q) for q on its
“soft line,” which is q, arbitrary and the other components
equal to7/a. In addition, this set also includes, (Q),
namely,a,(Q) anda,(Q). The dominant perturbation to the
free energy will be of ordek?y; ¥;, wherey; is one of the
critical order parameters. Terms of ordefy; are not al-
lowed, as they would cause ordering at all temperature
aboveT. and contributions independent ¢f are of no in-

terest to us. So our goal is to calculate all terms of order

o

which are quadratic in the critical variables and which there-
fore may lead to wave vector selection within the previously
dispersionless critical sector.

We now identify cubic terms in Eq19) which are of the
orm written in Eq.(47). There are no nonzero cubic terms

hich are linear in bothn and eithera;(Q) or a,(Q). The
allowed cubic terms are analyzed in Appendix B and the
result for their perturbative contributiodF to the free

energy from minimizing these cubic terms is

F&)=—Colaf(Q)+a3(Q)]

- CO%}, 65[33/{ E [Zsay(q)say( - q)

q(X
+ Saa(q)saa( - q)] + [Say(Q)Sﬂy(Q)
S
—2835(Q)S,5(Q) ] (48)
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where Co=144g5¢=4\%/e, and we have introduced the where¢, is the normal mode amplitude and we adopt the
definition normalizationc?+2c5=1. Thus, out of the nine spin com-
ponentss,;(Q) which were simultaneously critical in the
Sap(Q)= B2 (q). (490  absence of spin-orbit coupling, we have the spin fluctuation
corresponding to the three normal-mode amplituglesé, ,

In Eq. (48), 2, means that the wave vector is summed oVeryq ¢ in terms of which we write the staggered spin vector

the soft line so thag, = m/a for u# « andq, ranges from for orbital a,s,(Q), as
—ala to w/a. In particular, the sum ovey, also includes
q=Q. In Appendix C we evaluate the bare quartic terms in  S(Q)=[Six(Q),Sxy(Q),Sx Q) ]= (§xC1,§,C2,§,C2),

the free energy which also give a result of oralér; ¥;, and (54)
find
§,(Q)=(£xC2,£,C1,£,C2),
4
F(24):C0[§ 2 2 Say( @S, (— ) +a3(Q)+a3(Q) $(Q) = (£C2.£/C2.£,C1).
‘ Thetotal spin at sitd is the sum of the spins associated with
1 ; L .
N = 6i/3y< 25, (Q)55,(Q) each orbital flavor and is given by the staggered spin vector
o S(Q)= (& &y £)(c1+265), (55
s (Q)34,(Q) J (50) SO that thet’s are proportional to the components of the total
R ’ spin. Now we evaluate the fourth-order free energy terms

relevant to the spin order parametgsee Eq(41)] in terms
We now discuss the meaning of these results. One effe@f these critical order parametegs,
of the spin-orbit contributions is to couple critical spin vari-

ables of different orbitals. But this type of coupling only SF=Cy{[ &+ &+ 217 ¢ +3c5+2¢7c3]
takes place at the wave vectQrat which spin variables for 2.2, 2242, w2e2ur 2 212
both orbitals are simultaneously critical. So we write the sum —LE & & &G lle— ol (56)
of all the quadratic perturbations in terms of spin variabIeswhereCl is a constant. In general, a form like this would
Sy listed above as have “cubic” anisotropy in that the vecta# (the total spin
1 vecton would preferentially lie along a (1,1,1) direction in
. ; 2
5F2=§ E 2 (E [Méa)]MVSMa(Q)Sm(—Q)) order to maximize the negz_itlye term _g@gﬂ. Howeveag, f_or
a prv |\ 4, the present case, the minimum eigenvector M;f, is

(€1,C5,C5)<(1,—1,—1). Thus for the present cas§=c3,
, (51 and the quartic term is isotropic gspace. What this means
is that although the spin-orbit interaction selects the direc-
tions for the spin vectors, of orbital flavor« relative to one
another, there is rotational invariance when all s are
rotated together. This indicates that relative to the mean-field
state there are zero frequency excitations which correspond

+IM{],,5,4(Q)S,4(Q)

whereM () is a diagonal matrix an{* is an off-diagonal
matrix. These matrices are

4C, 100 to rotations of the staggered spin. Here we find this result at
Mg“):— 3 0 1 0f, order A2. More generally, one can establish this rotational
0 0 1 invariance to all orders ik and without assuming the valid-
ity of mean-field theory:**
0o 1 1 Note that the spin state induced by spin-orbit coupling
4C, (with ¢c;= —c,) doesnot have the spins of the individual
ME,“)=7 1 -1}, (52)  orbitals,s,, parallel to one another and thus the net spia
1 -1 0 greatly reduced by this effect. Explicitly, when=—c,, we
have
where the first row and column refers $Q, and the other
two refer tos,,,, with 8# a. The contributions to the free S=(&+E+E)CI=5(Q)=5(Q)=5(Q)

energy fromMﬁf‘) are independent of wave vector and thus 2 .2 2
do not influence wave vector selection. The termMi® =(EHETE)B 67
selectsQ (because the minimum eigenvalue of the matrixThis means that the total spin squared is 1/3 of what it would
Mff“) is —8C,/3, which is negative In addition, the mini- be if thes, were parallel to one another.
mum eigenvector determines the linear combination of order It remains to check that the variablag(Q) are less criti-
parameters that is critical. If this eigenvector has componentsal thans,,,(Q). We therefore conclude that in the presence
(c1,€5,C5), then, fora=Xx, we have of spin-orbit interactions, mean-field theory does give wave
vector selection and one has the usual two-sublattice antifer-
S Q) =6xC1, Sy(Q)=E&,Cy, S;(Q)=&,C,, (53 romagnet, but with a greatly reduced spin magnitude. It is
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FIG. 3. Hopping between different orbitals on next-nearest- x
neighboring(nnn) Ti ions when hopping between neighboring oxy-
genp orbitals is allowed. The hopping matrix element is the product
of matrix elements to hop from a Ti ion indj,, state to an O ion in
ap, state, then to an adjacent O ion also ipestate, and finally to
a nnn Tiion in ad,, state.

FIG. 4. Hopping between different orbitals on nearest-
neighboring Ti ions when hopping between neighboring oxygen
orbitals is allowed. The matrix elements for the two channels to hop
from d,, to d,, have opposite signs, so that the total matrix element
(summed over the two channgls zero, as one would deduce from
symmetry considerations. Thus the only processes involving two

) ) ) ) nearest-neighboring oxygen ions are processes like those shown in
interesting to note th&tLaTiO; has a zero point moment Fig. 3 between nnn Ti ions.

which is about 45% of the value of the fully aligned spin.

This zero-point spin reduction is much larger than would begifferent. Note that the paths frong to j & and fromi s to

expected for a conventional spin 1/2 Heisenberg system ifg yse alternate paths of the square plaquette conneiting

three Spatial dimensions. It is pOSSibIe that Spin—orbit interandj_ Notice that the processes which Coup|e nearest neigh_

a-CtionS mlght partlally explain this anomalous Spin rEdUC'bors cancel by Symmetr&eee F|g 4' so that the effect of

tion. hopping between magnetic ions via two intervening oxygen

ions involves only nnn hopping. This generates a perturba-

B. Further neighbor hopping tion to the KK Hamiltonian(which describes the low-energy

We now consider the effect of adding nnn hopping to themanifola) of the form

Hubbard model of Eq(1). For a perfectly cubic system, this ¢
hopping process comes from the next-to-shortest exchange V= ——=> > y.(i,j)X
path between magnetic ions, as is shown in Fig. 3. We write 2% T

the perturbatiorV to the Hubbard Hamiltonian due to these

2 T
Bzﬁ Eaﬂﬁci Brrcj 50’)
o

processes as X ﬁz&r EzzxﬁﬁchﬁUCi sols (60)
V=t' >, Yo(1,])Vij (58) wheree'=2(t")%/U and U is the on-site Coulomb energy.

This may be written as

wheret’ is the effective hopping matrix element connecting ¢
next-nearest neighbors, is summed over coordinate direc- Vik=75 2 2 Ya(l,1)Va(iLi), (61)
tionsx, y, andz v,(i,j) is unity if sitesi andj are next- 2% T

nearest neighbors in the sameplane and is zero otherwise, where, apart from a term which is a constant in the low-

and energy manifold, we have far=x,
Vij= €2 55C155Cj 50 - 59 Ly t t t t
. ; ;5 wpoipoI o0 (59 Vx("J)_% (CiysCizsCiy nCizo T CiyoCiy nCiznCizo

Here « is in the direction normal to the plane containing
spinsi andj, and eiw restricts the sum ove and é to the
two ways of assigning indices so that 8, and § are all  and similarly fory andz

T T T T
+ CizoCiz 7]ij 7;ijtr+ Ciz:rciy ananjyo)- (62)
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The details of the mean-field treatment of this perturba- . +
tion are given in Appendix D. Here we summarize the major SHyk=€nY, 2 2 (CiysCigaC e Cipar

analytic results obtained there for the wave-vector-dependent 0 By2{D) o'
spin susceptibility at the critical wave vectorQ), o el ciotet el e,
Xao:po'(Q) = Xap(Q) 845+, Wherea and 8 are orbital indi- iyor “ipatiyatipo’ T Liyebipatiper Cive
ces andr andg’ are spin indices. The result of Appendix D T T T T
is that P i = CigorCi8oCiyoCivo’ = 2CipoCigoCi e Ciyor
+2¢ ,CipeClaCiver), 66
12kT—8¢ 8¢’ 8¢’ iyo! “iBa iBaiy ) (66)
Yus(Q)1=| 8¢ 1kT—8¢ 8¢ wheree=1t%/U, as before? To see the effect of this pertur-
h ) ) ' bation within mean-field theory, we calculate its averégpe
8e 8e 1XT-8e 63 Appendix E for details Confining to averages which are
critical whenz=0 (i.e., A,, and I§w) the result of Appen-
The minimum eigenvalue is dix E is
AN=12kT—8e—8€'. (64) i .
- (SHk)=enX > [5Aga()Aza(1)—
This gives () By#ij)
KT.=2(e+€")/3. (65) 10Ag5(1) A1)+ Bpp(i)-Bgg(i)
By considering the eigenvectors and the effect of the fourth- —2Bg,(i1)- B, ()]. (67)

order terms, the analysis of Appendix D shows that nnn hop- . _ .
ping does stabilize & antiferromagnetic structure, but the Using Eqs.(8),and (49 to Yvnte_the or(_ller parameters in
resulting 120° state has zero net staggered spin. In additioﬁ(,erms of thea,'s and the_says, this contributes a perturba-
as before, there is a degeneracy between the spin-only statd" to the free energy given by
we have just described, and a state involving orbital order. 1
As shown in 11, fluctuations remove this degeneracy, so that SF=2=> olx: o) ]wadma(—q)
we may consider only the mean-field solutions for spin-only 2 K
states. Such a magnetic structure for which the local moment 1
(summed over all flavojsvanishes, will be rather difficult to +2> ﬂx;l(q)]zgsay(q)sgy(—q). (68)
detect experimentally. 2 4By

It is instructive to argue for the above results without
actually performing the detailed calculations of Appendix D.Where
We expect the effect of indirect exchange between nnn’s to 1
induce an antiferromagnetic interaction between the spins of o xn ()]
differentorbital flavors of nnn’s. Note that the wave vec@r 1
describes a two sublattice structure in which nnn’s are on the — 5(2¢+2¢cy—c))
samesublattice. Accordingly, as far as mean-field theory is 3
concerned, an nnn interaction between different flavors is =—20en
equivalent to an antiferromagnetic interaction between spins —(cy—cy)
of different flavors on the same site. So the spins of the three \/§ Y
orbital flavors form the same structure as a triangular lattice 69)
antiferromagnet® namely, the spins of the three different
orbital flavors are equal in magnitude and all lie in a singleand
plane with orientations 120° apart. This state still has global
rotational invariance, but also, as does the triangular lattice 0 c, ¢
antiferromagnet, it has degeneracy with respect to rotation of —1 _
the spins of two flavors about the axis of the spin of the third Olxs (@)]7=—4en| & 0 o). (70
flavor. Cy ¢ O

1
E(Cx_ Cy)

_CZ

If the minimum eigenvalue oy ! at wave vectorQ is
C. Hund's rule coupling negative, then the instability temperature for the associated

We now consider the effect of Hund's rule coupling. Our order parameter is raised by the perturbation and vice versa.
aim is to see how this perturbation selects an ordered phad¥ote that at wave vectd@, c¢,=cy=c,=—1 the eigenval-
from among those phases which would first become criticaties of8] x; *(a)] are 8ne, —4ne, and—4ne. On the other
in the absence of this perturbation as the temperature is rdtand, the eigenvalues tﬁfx;l(q)] are both—20ne. From
duced. To leading order imp=Jy/U, where Jy is the this result we conclude that Hund'’s rule coupling favors an-
Hund’s rule coupling constartvhich is positive in real sys- tiferromagnetic orbital ordering, as described by the order
tems, as discussed in Appendix E, this perturbation réads parameters,;(Q) anda,(Q). Since the mean-field tempera-
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ture for spin and orbital ordering were degenerate #for where
=0, we conclude that within mean-field theory the addition
of an infinitesimal Hund's rule coupling gives rise to an or- w=2Cq—20e7. (74)

dering transition in which the ordered state shows Iong—rang?n the aboveCy=4)2/e must be positiver,=12kT+ 8¢
0— 0~ ’

antiferromagnetic orbital order, characterized by the order- _ - "
parametersa,(Q) and a,(Q). However, since we have and »=Jy /U is normally positive, although we may draw a

shown elsewheré that for the bare KK model, fluctuations {Dic:se diagram incorporating the possibility thats nega-
et e oo e o sy /A3 e have seen i ony spivori mrscions we ge
will take a finite amount of Hund’s rule counling to brin, gspin state which has a rotational degeneracy, and with only
X . . . piing X 9 Hund’s rule interactions, the ordered phase has orbital rather
about orbital ordering. For spin ordering the mean-field stat(% . . : .
) ; . : .. Than spin ordering. When both interactions are present, there
is degenerate with respect to an arbitrary rotation. This is ition b h f orderi T
reflected by the fact that the term which is fourth order in the > & competition between these two types of ordering. To
Spin Combonents is iSotronic study this competition we need to compare the minimum
P pon piC. . : . _eigenvalue of the two susceptibility matrices given above.
We now discuss the anisotropy in the mean-field solut|or‘|: . . - . : .
: . or the inverse spin susceptibility matsizz, in which case
for orbital order. We want to determine the form the free - . .
. . .~ “the minimum eigenvalue is
energy assumes in terms of the Fourier-transformed variables
a,(Q) anda,(Q). Wave-vector conservation dictates that we X BN
can have only products involving an even number of these N-=hotx+(2/2) (227 +2y". 79
variables. If we write a;(Q)=acosf, and a,(Q) On dimensional grounds, we expect that@y< rne, where
=asin#,, then we show in Appendix F that the contribution 7 is a constant, Hund’s rule coupling will dominate and will
to the free energy of ordex® is independent of),, but the lead to orbital ordering. Indeed after some algebra we find
term of ordera® is of the form sF=a’ Cy+ Cq cos(&, this condition with7~2.7. This may be written ag>0 and
+¢)]. This form indicates an anisotropy, so that the mean\ < 7' e\/5, where 7’ = \/7/2~0.82 which gives rise to the
field solution is _not su!o!ect to a rotational deg_er)eracalln phase diagram shown in Fig. 5. This phase diagram is not
a, space. IfCgq is positive and¢=0, these minima come quite the same as that found in Ref. 29 for zero temperature.
from the six angles that are equivalent @g=w/2+nw/3.  When we have spin ordering, we may analyze the fourth-
For 6,=m/2, a;,=0 and we have ordering involving only order terms, as is done in E(6). That analysis shows that
a,, so that(N,)=1/3, (N,)=1/3+ \2a,(i), and(N,)=1/3  unless the minimum eigenvector has components of equal
—\/2a,(i). The six minima of cos(&,) correspond to the six magnitude, the anisotropy favors spin ordering along a
permutations of coordinate labels which give equivalent or{1,1,1) direction. The condition that the eigenvector be
dering under cubic symmetry. Somewhat different states oot—1,1,1) is thaty+z=0. This can only happen when
cur for Cg negative, but different solutions reproduce the=0. Then we have isotropy and the mean-field state exhibits

cubic symmetry operations. rotational degeneracy. Otherwise, whem: 0, the fourth-
order terms give rise to an anisotropy that orients the stag-
D. Spin-orbit interactions and Hund'’s rule coupling gered spin along a (1,1,1) direction. We should also remind

the reader that fluctuations favor the spin-only state, so that

ﬁHere ¥V§ bhrieﬂ_y cort1)_siderdtlf_1|e %a}se \llvhen vvl_e imwde th(?he phase boundary shown in Fig. 5 will be shifted by fluc-
effects of both spin-orbit and Hund’s rule coupling. We con-y a4iong to larger positivey. In the regime of orbital order-

sider the instabilities at wave vect@. In this case we con- ing, we indicate in Appendix F the existence of a sixfold
struct the spin susceptibility; *(Q) [defined as in Ec(.68)]'. anisotropy in the variables;(Q) anda,(Q), such that the
For the present case we may use our previous calculations iy equivalent minima correspond to the six possible states
Egs.(52) and(68) to write which are obtained by choosing, = 1/3 for one coordinate

a, and then occupying the two other orbitals with probability

Notx oy 13+ A.
XsT)=| Y Netx oz, (7D)
y z Ao+ X VI. DISCUSSION AND SUMMARY
where the first row and column refer$g,, and the other two The cubic KK model has some very unusual and interest-
rows and columns refer tg;, with 3+ y and ing symmetries, which cause mean-field theory to have some

unusual features. In particular, for the simplest KK Hamil-
tonian, we found that mean-field theory leads to criticality
for the wave-vector-dependent spin susceptibility associated
o ) - ) with orbital « which is dispersionless along tlgg, direction
Similarly the orbital susceptibilityalso at wave vectoQ) is  of the wave vector. This result is consistent with the previous
given by observatiofi* that the Hamiltonian is invariant against an ar-
bitrary rotation of the total spin in the orbital summed over
(73 all spins in any single plane perpendicular to thexis. This
' “soft mode” behavior prevents the development of long-

4 4 4
X=—§Co, y:§C0+467], Z=—§Co+4€77- (72

Aot W 0

—-1_
x(Q)p = 0 No+W
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n state may exhibit long-rangentiferromagnetic orbitabrder.

One caveat concerning our result should be mentioned.
All our results are based on a stability analysis of the disor-
dered phase. If the ordering transition is a discontinuous one,
our results might not reveal such a transition. In 11l we will
present results for the temperature dependence of the various
ORBIT mean-field solutions. Further analysis of the ordered phase is
needed to obtain a phase diagranT at0, as is done in Ref.

29.

It should be emphasized again that all the results in this
paper are based on the assumption that nearest-neighbor
bonds along an axig are “inactive,” namely, that there is
no direct hopping betweed orbitals along such bonds. Even
within cubic symmetry, such hopping could still exist, alas
with a very small hopping energy. However, as soon as we
add such terms, the vertical bond in Figblbecomes ac-
tive, and Eqs(26) and(27) have the additional contributions

FIG. 5. The mean-field phase diagram as a function of the spin-AX;j:ze”Ca and Ax,;=2€"(c,+cp), with €'=t"?/U.
orbit Coup”ng constank and the Hund'’s rule Coup"ng Constant This introduces diSperSiOI’] in all dil’eCtionS, and select order
=Jy/U (which is normally positivg In the “spin-only” phase for  at q=Q. Distortions away from the cubic structure can en-
7#0, the staggered moment orients along a (1,1,1) direction, buhancet”, and stabilize such order even further.
the staggered spin moments of different orbital states are not col- one general conclusion from our work is that it is not safe

fiold St hae rotational degenracy, so no easy direcion o stalg, ASSCCIate properties of real experimental systems with
T 9 Y, Y € roperties of a model Hamiltonian unless one is absolutely
gered magnetization is selected and the excitation spectrum

gapless. In the orbital phase one has the sixfold anisotropy assoctH'"® that the real system is a real,'zat(m least in all ',m'
ated with the equivalent choices for differently populating orbital POrtant aspecjsof the model Hamiltonian. Here the ideal
levels in cubic symmetry, as is discussed in the text. cubic KK Hamiltonian has properties which are quite differ-
ent from those observed for LaTiQalthough a naive ap-
i proach would be tempted to use this model for such systems.
range spin order at any nonzero temperat@reven though  \wnat this means is that it will be necessary to take into

theAsystem |sba t_hree-gl_mher(;smnal Onﬁ_ i account effects that one might have been tempted to ignore
ny perturbation which destroys this peculiar Symmetry;p, o qer 1o identify a model that is truly appropriate for ex-

Wg:ti?:ﬂ?;rlevbgeir?\ﬁgtaima:g ?ﬁgig’lg g)]gs-r;ii:%?b?tpli?\tgrrgs-r' Ir’berimentally realizable systems. Alternatively, perhaps our
'fi)ons ) éecond-nei gk]lbor hopping, ang Iﬂund’s rule cou- work will inspire experimentalists to find systems that are as
’ 9 ppIng, 1plose as possible to that of the ideal cubic KK Hamiltonian

pling in stabilizing long-range spin order. In the presence o . o
spin-orbit interaction we find wave-vector selectitiecause treated here. Such systems would have quite striking and

now the spin of different orbitals cannot be freely rotateg@10malous properties.

relative to one anothgrinto a two-sublattice antiferromag-

netic state with a greatly reduced spin magnitude. Since ex-

periment on LaTiQ shows such a reductidhthis mecha- ACKNOWLEDGMENTS
nism may be operative to some extent. However, as noted

previously,* the excitation spectrum does not have a gap A B.H. thanks NIST for its hospitality during several vis-

until further perturbations are also included. The mean-fieldis \when this work was done. We acknowledge partial sup-
solution is consistent with this conclusion, because the means it from the US-Israel Binational Science Foundation
field state which minimizes the trial free energy is degeneratrgBSF)_ The TAU group is also supported by the German-
with respect to a global rotation of the staggered spin. Therel—Sraeli Foundation(GIF).

fore, our minimal model cannot be used for a full description

SPEN SPIN A

of LaTiO,.

The ordered state which results when nnn hopping is
added to the bare KK Hamiltonian is quite unusual. In this APPENDIX A: HIGHER-ORDER TERMS
state, each orbital flavor has a staggered spin moment, but IN THE FREE-ENERGY

these three staggered spin moments form a 120° degree state

such that the total staggered spin mom@utmmed over the Here we employ Eq<g5), (6), and(7) in conjunction with
three orbital statgsis zero. It is not immediately obvious Eq. (19), to derive general expressions for the cubic and
how such long-range order would be observed. Finally, weguartic terms of the free energy.

show that when the bare KK Hamiltonian is perturbed by the The “bare” cubic terms in the free-energy arise from
addition of only Hund's rule coupling, the resulting ordered Tr{ X3]. We find
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3(; T
TX3(i)]= EB g Tl o Yarospym (€6, 7,Clasp,

. T .
X Y”‘zl’zﬁz ’72( ! )Ciﬂz 7,Ci 013P3Y0‘3P3133 7/3( e 33773]

= E [Auiay ()80, Baa)(D) 0]
X[Aazas(i ) 5p2p3+ Bazas(i ) ' o-pzps]

X[Aasal(i ) 5p3p1+ Baaal(i ) : a-p3p1:| ' (Al)

PHYSICAL REVIEW B 69, 094409 (2004

Making use of the identity18), this becomes

TIX3()1=22 (A a1 Ay (D Awya, (i)

+3A

a1

()Bayay(i) - Bogay (i)

+i[ By, (1) X By (1) Baga, (D} (A2)

The bare quartic terms in the free energy arise from
Tr[X*]. We find

4 T T T
TIX()]= 2 2 Tr[c'alplYO‘lplﬁlnl( )C'B1’71 'azsz"‘sz'Bz’iz( )C|'827712 '013P3Y“3P3337/3(|)C'B3’73 'a4P4Y“4P4/34'I4( )0'54774]

aiBi pim;

—g 2 Ay (18510, Bayay () 050 1T Ay (D 3550+ By (1) 0 M0, (1) 8y, + B (1) 0]

X[ ap40q (|)5p4p1 a4a1(|) p4p1]

Again using the identity Eq(18), this becomes

Sy, (1) By ()]

TIX4()1=22 {[Aujay(i)Agya,(i) T B

X[ Ay () Aayay (1) B (i) Baya, ()]
[ Ay (1D Buyay () + B (1) Ag (1)
+i éalaz(i )X By ()] [Auyay (1B, (i)

(i) +iBaya, ()X Boya, ()]}
(A4)

(HA

APPENDIX B: CUBIC FREE-ENERGY TERMS

Referring to Eq(A2), the relevant terms for our purpose
come from the second and the third terms there. Working i

Fourier space we hence have

L

\/N q192 @jazag

X (=01 02) +iB, 0,(01)

[3 alaz(QI) Baza3(q2) aga,

X B)ozzclS(qZ) : §a3a1(_ql_q2)]' (Bl)

(A3)

o532,

+ 3Aa1a2(q) Ba2a3( - q) . Ba3a1+ i Balaz

[3Aala2(q) Ba2a3 . Ba3al( - Q)

X Ba2a3(Q) : Ba3al( - Q) +i Balaz(Q) X Ba2a3' Ba3a1
X (=) B a)(DXBayey(—0-Bupo ], (B2

whereB which does not depend apis the uniform field.

We first consider the terms involving th&s. Contribu-
tions come fromas;=a; [the first term in Eq.(B2)] and
az= a, (the second term thereHence we find

24e , . - 5
(SFA:—W% aEB Aaﬁ(q)Bﬁa[Baa(_q)+BBﬁ(_q)]y
(B3)

gvhere E;,B denotes thate# B. When we minimizeF,
+ 6F o with respect toA,;5(q), and use Eqs27) and (46),
we get the contribution

SFp= —72g§e§q‘, %‘,y €25y Say(0) +S5,(A)][S0y(— Q)

—q)J[2+cogq,a)] "t (B4)

where we have defined

+ SBV(

Say(Q)=BJ,(q). (B5)

When one of the quantitieB here acts as the spatially uni- Also, since we are interested in the free energy to quadratic

form field [see Eq(46)], this expression becomes

order in the order parameters, we havelset 2¢/3.
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In this result we want to keep only contributions which F()= s, + sFg=—C[a%(Q)+a3(Q)]
involve the critical variables. Fas,,(q) this means that we
sum overqg'’s such thatqz= m/a, for 8# a. Thus for each
S., the wave vector sum is a sum over the comporngnt
with the other components gfequal torr/a. We denote this
type of sum byEqa. Furthermore for a term involving com-

ponentss,,, andsg,, with differentorbitalsa and 3, this sum
reduces to the single wave vecQr= (7,7, 7)/a. So

- CO%«/ Giﬂy{ [Sap(Q)Sp,(Q) —2545(Q)S,5(Q) ]
+q2 [Say(q)say(_q)+saa(q)saa(_q)

+Saﬁ’(q a/i’ q)]} (BlO)

_ 2 2 Sa'y(q)sa‘y( _Q) 2
OF p= 144906%7 Eam{ an —2+cos(qya) whereCy= 144g;e.

APPENDIX C: QUARTIC TERMS IN THE FREE ENERGY
+Sa'y(Q)S,B'y(Q)} . (BG)

Now we look at fourth-order terms. These involve two
critical order parameters and two powers\ofTherefore, we
Here we will set[2+cos@,a)]=1 because fors,, (with pick from Eq.(A4) all terms involving at least two powers of
a#y) we must haveq,=m/a. This term favors order- B. Since two of the factor8 in each term have to bB,,

ing at wave vector Q with  s,(Q) _collinear with :_gﬁa, with a# B8 [see Eq.(46)] we see that the terms
ss(Q), where s,(Q) is a vector with components nyolving a single power of vanish. Thus we have to con-
[Sax(Q);Say(Q),Sa(Q)]. Similarly, the terms Wltm2_a1 sider the expression

lead to a contributiorSF ,= — 144goe[a1(Q)+a2(Q)

Next we consider the contribution coming from the terms
with three B’s in Eq. (B2). Here we put one of the 36kT2 0/%2 [4A“1“2A“2“SB“3“4 B“4“1
g-dependenB’s to be diagonal in the orbital indices, to ob- agay
tain R R R
+2Aa aAa a Ba a 'Ba a +(Ba a 'Ba a)
1%2 3%4 293 4“1 1%2 293
24¢ , 35 .B —(B 3 (B 3
Fo= i > S D e Bl @B~ q) X Bagey Baya) = (Baye X Bagay) " (Bage, X Baa)) ]
\/N q ap alﬁl'y L (Cl)
- BBl( q)]B (B7)  whereA andB are functions of the site indexThe first two

members of Eq(C1) are calculated for the case in which the
A’s are critical, and th@'’s are given by Eq(46). Denoting

Eliminating the noncriticaB),;(q) variables by minimizing . e 1 -
their contribution to the self-energy t@F(2 ), we find

F,+ 6Fg with respect to them, we get

SFM=36KT ) [4A2,(1)+2A,,(1)Agy(1)]B,5 B,
OF5==57600/1° " 3 Xp(A)[535(0) ~Sup(a)] -

_ 2 2 ; ;
X[Sﬂﬁ(_q)_saﬁ(_q)]’ (BB) _36(1-9%0%7 eaﬁ‘y[4Aaa(l)+2Aaa(|)AﬁB(|)]
wherey is given in Eq.(27), and we have used the definition —216<Tg§2 [aZ(i)+a2(i)], (C2)

(B5). As before we separate the sums to be only over critical
wave vectors for each orbital spin vector, in which case w

have Svhere in the last step we have used E).

The contribution of the remaining two members of Eg.
(C1) is denotedsF$?) . Here we have to take two of tHgis
__ 2 2 _ as critical, while the other two are given by E@6). To
6Fg= 144906%y Eab’v[an [Saal®@)Saal —a) shorten notations, we denote here the critiBaks B(i),
while the noncritical one is simply written & We have

-q)]-2 . (B9 - - .
i ap

Here we noted thaj,s(0) = x.5(Q) = 1/(4€) because this +1B (i)-B B (i)-B.1+[B. (i)-B
component ofy depends om, which is alwaysm/a in the [Baall)BagllBaoll)-Bgal +[Baall)-Bagl
summation over wave vector. X[Bgg(i) Byl —[Buali) X Bogl- [Baal(i) X Bg,
In summary the total contribution to the quadratic free [Bse ol = o) (B pd
energy at ordeh? is F[Baali) X Bygl- [Baali) XBgal}- (C3
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Making again use of Eq46), this expression becomes €' o
VKK:E; %5 7&('1])2 fiﬁa[crﬁpciancfﬁncjap
a P

6F(22)=72<Tg§2i Ey s,

2 BL,(1)BL (i) . .
v + ciﬁ.pciﬂ,}cja”cjap]. (D1)
(Ca) Within our mean-field theory, the averages are taken sepa-

rately on the operators belonging to the siteand those

_ ) . _ belonging to sitg. The required averages are then given in
Transforming to Fourier space, noting that only the first termg (16). The following contribution to the trial energy is
here containg while in the other two we must necessarily than

haveq=Q (because they involve simultaneous criticality of
two flavorg, we obtain

=2 B, (1)B(0)+ 2B7,(1)BJ(1) |

(Vi) = €' 2 2 Yalid) €l Asg(D)Asg(1)

6F‘22>=72<T%[42Zsa;g(q)sw(—q) . L
q ap +B (i) -Bag(i) + Agg(i)Ass(i) +Bpsli) - Bss(i)]:

(D2)

Transforming to Fourier space, noting that each site has four
next-nearest neighbors in eaahplane, we obtain

+ 0%7 Etzxﬁy( Zsay(Q)Sﬁy(Q)

-> sw<Q>sﬁy<Q>) , (C5)

A 2 _
where we have used the definition E&5). The total con- (Vi) =4e % %5 €apaCeCal Asp( @) Asp(— Q)
tribution to the free energy from quartic terms is then . .

+Bsp(Q) - Bsg(—a) +Agg(Q)Ass( —a)

+Bps(q) Bos(— )], (D3)

wherec ;= cos(z0). The result Eq(D3) is now added to Eq.
(24), in order to obtain the modifications in the susceptibility

Starting from Eq(60), we may write the perturbation due tensor. Specifying to the diagonal order parames€ys and

FS=6F+ 6F ). (C6)

APPENDIX D: MEAN-FIELD THEORY FOR nnn
HOPPING

to next-nearest neighbors in the form I§M, the susceptibility tensor becomgesee Eq.(26)]
|
12kT+4e(cy+c,) 8e'c,cCy 8e'c,C,
x(q) 1= 8e'c,Cy 12kT+4e(cy+c,) 8e'c,C, ) (D4)
8e'c,C, 8e'c,C, 12kT+4e(cy+cy)

Now we look at the most critical wave vector, which here Correspondingly, there are two degenerate eigenvectors:
is Q. There we have

|1)=(0,1,-1)/V2, [2)=(2,-1,—-1)/\/6. (D8

12KT—8e 8¢’ 8¢’
_ , / To avoid confusion between orbital and spin labels, we will
1 12KT— : !
x(Q) 86/ ) Be Be ' here denote the orbital statesy, andz by a, b, andc. Then
8e 8e 1KT—8e in terms of normal mode vectgrandp we have the orbital

(D5  spin vectors as
We begin with the analysis of the susceptibility tensor of the

spin order parameters, which are given by the elements of 2 1 N 1 211

B,. . Then we can use the matri®5). The minimum eigen- e S~ Je" \/§§' ST Je" \/Eg

value is (D9)
A=12KT—8e—8¢, (D6)  with

which gives

L2 3Pttt ot
KTo=2el3+2¢€' /3. (D7) 3P 26 TP T B
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1.1 1 S=s5=5=2£3. (D12)
el N Sl @ 4
S g e (D10)
Evaluating the fourth-order free ener§gee Eq.(41)] rel- Also we see that the three orbital spin vectors obey
evant to the spin-order parameters, we find
’ 3 1 S H=S &= &=~ £/3. (D13
_ 2 02)2 2
(% si) ‘Ev s.s=7 (&1 3(Exp)%.

(D1D) The three vectors each make a 120° angle with each other
What we see is that the fourth-order term does not select and must therefore lie in a single plane. We can fix, say,
particular direction for order. We have three angles whichThis accounts for two angles. Then the other two spin vec-
describe the degenerate manifold. For a given valug?f tors require another angle to tell which plane they lie in.
+p?, we optimize the term&X p)? by taking|&=|p| and  Note that there is zero net staggered moment. There is long-
making & perpendicular top. So, it takes two angles to range spin order, but not of any simple type.
specify & (given that its length is fixedand then we have one Next we analyze the susceptibility tensor of the occupa-
angle to specifyp, given that|p|=|& and it is perpendicular tion order parameters, which are given by the elements of
to & We now discuss what this choice of order parameter#\,,. Since the matrixA,, is traceless, we use the param-

means for the spin vectors. First note that etrization Eq.(8) to obtain from Eq.(D5) the 2X2 matrix
2e€ 8¢’ !
12T+ — 3 — (5¢,+5¢y+2¢,)+ —- (cxcy—ZCch—Zczcx) ﬁ(cy—cx)ﬂL ECZ(Cy_CX)
X @)=
2¢ 8¢’ ,
ﬁ(cy—cxw— Ecz(cy—cx) 12kT+2€(cy+cy+2c,) —8e'c,cy
(D14)
|

This gives a minimum eigenvalue identical to that of Eq. t23
(D6), which yields the same instability temperature as for the  §Hy k= 2H (CiTWCi;;gC;rWngU/
spin-only states. However, in the absence of second-neighbor Us (i) By#(i) oo’
coupling, the spin-only states are favored by fluctuatins, ot + Lot +
so that choice should be maintained for infinitesimal next- CiyoCiBoCiyaCipo T CiyoCiBoCiper Ciyor
nearest neighbor hoppingThe situation could change when o e et e —2ct e ot e,
the next-nearest neighbor hopping exceed some threshold iBo! ZIBoTiyoriye iBorIBo=jya!iva
value) +20|70’CIBU IBUCJYU) (E2)

Taking the thermal averages using E§6) we find
APPENDIX E: DERIVATION OF THE HUND’S RULE

HAMILTONIAN t2
= 2A5 (1) Az.(]
The Coulomb exchange terms for thg, states can be (k)= U2 T sy [2A5(1)Agy(1)
written in the fornt® _ _ . .
" = 2B, (i) B, () + 4B, (1) Byul())
Heox= 72 aE E ¢l ., IM,c,ﬁ(,,clﬁu_ a/37 aﬁv BY 7B
#B oo —2Bgp(i)-Byy(i)], (E3)
+CiTagCiTB(;'Ciao"Ciﬁo_ZCFQUCiTﬁU’CiﬁU’CiaU)’ where terms independent of the order parameters were omit-

ED ted.

. , . . APPENDIX F: SIXTH-ORDER ANISOTROPY
where Jy, is the Hund’s rule coupling. Addin@{.. to the IN THE ORBITAL SECTOR

Hamiltonian Eq.(1), the perturbation expansion in power of
the transfer integral$ now contains a term of the order At fourth order, the terms im(i) anday(i) are propor-
t2J,, /U2, which reads tional to[a%(i) +a3(i)]? [see Eq.(41)], and there is com-
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plete isotropy ira;-a, space. However, this isotropy must be which we denotea,. Then we may write
broken in view of the special role played by the directions

along the cubic crystal axes. This symmetry is found in the a

sixth-order terms, as we now show. There are several contri- 6F = W{lqa% as]®+aS—15afas+ 15a2a;—ad}.
butions to the free energy at sixth orderag(i) anda(i), (F4)
some of which involve coupling to noncritical variables. To

illustrate the symmetry of these terms we explicitly consider. . : : _
only the “direct” terms arising from Eq(19), from which To clarify the anisotropy of this form we sa{=r cosé, and

a,=rsin@,, in which case
we have

6
SF=a Trxi(), (F1) OF = 7 [10+ oS 64y)]. (F5)

wherea is a numerical coefficient timdsT. Thus we write ) .
This free energy has minima at the anglgs= w/2+n/3,

6 6 - for n=0,1,...,5. These correspond ta;=—r sin(nw/3)
ZaZ trA>(i), and a,=r cosfi/3). Forn=0, only a, is nonzero. From
Egs.(12) one sees that this correspondgig(i))=1/3, and
(F2) . . . ) .
] o havingN,(i) —N(i) oscillate at wave vecta with an am-
where here the trace operation, indicated by “tr,” refers t0 aplitude proportional tor. By similarly analyzing the other
diagonal sum over the indices of the mathix as contrasted minima, one concludes that these six minima correspond to
to the trace used elsewhere in this paper over thetgjx the six ways one can chose indices so tij(i))=1/3 and

SF=, Tr

T .
2 CipraB(l )59,7/Ciﬁ77
aBpn

states. Using Eq8), this yields (Ng(i)—N.(i)) oscillate at wave vecta®. (There are three
_ 16 i 6 ways to choose and two ways to fix the phase of the orbital
N ay(i)+ J3ay(i) ay(i)— V3ay(i) density wave. However, additional contributions to the free
SF=a>, + . - : .
i J6 J6 energy might make the coefficient of the cosine term in Eq.

. (F5 negative, in which case the minima occur foy,
—2a4(i) =n/3. Now forn=0 only a, is nonzero, and, from Egs.
(T) 1 (F3) (12), this corresponds toNX(i)=Ny(i)=§+ &(i), and
N,(i)=3—248(i), where5(i) oscillates at wave vectdD.
Now, since we are only interested in how this term affectsThe other minima correspond to cyclic permutations of co-
the critical variables, we may replaciNa,(i) by a,(Q), ordinate axes consistent with cubic symmetry.
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