3,686 research outputs found

    Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation

    Get PDF
    Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical–lateral border. Cdc42 and its effector complex Par6–atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6–aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical–lateral border positioning, and apical differentiation

    An integrated source of spectrally filtered correlated photons for large scale quantum photonic systems

    Get PDF
    We demonstrate the generation of quantum-correlated photon-pairs combined with the spectral filtering of the pump field by more than 95dB using Bragg reflectors and electrically tunable ring resonators. Moreover, we perform demultiplexing and routing of signal and idler photons after transferring them via a fiber to a second identical chip. Non-classical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS process, paves the way toward truly large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.Comment: 4 figure

    Nonlinear characterisation of a silicon integrated Bragg waveguide filter

    Full text link
    Bragg waveguides are promising optical filters for pump suppression in spontaneous Four-Wave Mixing (FWM) photon sources. In this work, we investigate the generation of unwanted photon pairs in the filter itself. We do this by taking advantage of the relation between spontaneous and classical FWM, which allows for the precise characterisation of the nonlinear response of the device. The pair generation rate estimated from the classical measurement is compared with the theoretical value calculated by means of a full quantum model of the filter, which also allows to investigate the spectral properties of the generated pairs. We find a good agreement between theory and experiment, confirming that stimulated FWM is a valuable approach to characterise the nonlinear response of an integrated filter, and that the pairs generated in a Bragg waveguide are not a serious issue for the operation of a fully integrated nonclassical source

    Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    Get PDF
    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.Comment: 7 pages, 4 figure

    Efficient, Compact and Low Loss Thermo-Optic Phase Shifter in Silicon

    Full text link
    We design a resistive heater optimized for efficient and low-loss optical phase modulation in a silicon-on-insulator (SOI) waveguide and characterize the fabricated devices. Modulation is achieved by flowing current perpendicular to a new ridge waveguide geometry. The resistance profile is engineered using different dopant concentrations to obtain localized heat generation and maximize the overlap between the optical mode and the high temperature regions, while simultaneously minimizing optical loss due to free-carrier absorption. A 61.6 micrometer-long phase shifter was fabricated in a CMOS process with oxide cladding and two metal layers. The device features a phase-shifting efficiency of 24.77 +/- 0.43 mW/pi and a -3 dB modulation bandwidth of 130.0 +/- 5.59 kHz. The insertion loss measured for 21 devices across an 8-inch wafer was only 0.23 +/- 0.13 dB. Considering the prospect of densely integrated photonic circuits, we also quantify the separation necessary to isolate thermo-optic devices in the standard 220 nm SOI platform.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OE.22.010487. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under la
    • …
    corecore