9,323 research outputs found
Automatic Detection of Seizures with Applications
There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used
The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration
The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution
The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration
The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number
Photon-photon correlations and entanglement in doped photonic crystals
We consider a photonic crystal (PC) doped with four-level atoms whose
intermediate transition is coupled near-resonantly with a photonic band-gap
edge. We show that two photons, each coupled to a different atomic transition
in such atoms, can manifest strong phase or amplitude correlations: One photon
can induce a large phase shift on the other photon or trigger its absorption
and thus operate as an ultrasensitive nonlinear photon-switch. These features
allow the creation of entangled two-photon states and have unique advantages
over previously considered media: (i) no control lasers are needed; (ii) the
system parameters can be chosen to cause full two-photon entanglement via
absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference
- …