589 research outputs found

    Use of hydrophilic polymer coatings for control of electroosmosis and protein adsorption

    Get PDF
    The purpose of this project was to examine the utility of polyethylene glycol (PEG) and dextran coatings for control of electroosmosis and protein adsorption; electroosmosis is an important, deleterious process affecting electrophoretic separations, and protein adsorption is a factor which needs to be controlled during protein crystal growth to avoid multiple nucleation sites. Performance of the project required use of X-ray photoelectron spectroscopy to refine previously developed synthetic methods. The results of this spectroscopic examination are reported. Measurements of electroosmotic mobility of charged particles in appropriately coated capillaries reveals that a new, one-step route to coating capillaries gives a surface in which electroosmosis is dramatically reduced. Similarly, both PEG and dextran coatings were shown by protein adsorption measurements to be highly effective at reducing protein adsorption on solid surfaces. These results should have impact on future low-g electrophoretic and protein crystal growth experiments

    Highly Non-Linear Optical (NLO) organic crystals

    Get PDF
    This research project involves the synthesis and characterization of organic materials having powerful nonlinear optical (NLO) properties and the growth of highly ordered crystals and monomolecular films of these materials. Research in four areas is discussed: theoretical design of new materials, characterization of NLO materials, synthesis of new materials and development of coupling procedures for forming layered films, and improvement of the techniques for vapor phase and solution phase growth of high quality organic crystals. Knowledge gained from these experiments will form the basis for experiments in the growth of these crystals

    Physical properties of immiscible polymers

    Get PDF
    The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed

    Casimir Force on a Micrometer Sphere in a Dip: Proposal of an Experiment

    Full text link
    The attractive Casimir force acting on a micrometer-sphere suspended in a spherical dip, close to the wall, is discussed. This setup is in principle directly accessible to experiment. The sphere and the substrate are assumed to be made of the same perfectly conducting material.Comment: 11 pages, 1 figure; to appear in J. Phys. A: Math. Ge

    Casimir effect for the scalar field under Robin boundary conditions: A functional integral approach

    Full text link
    In this work we show how to define the action of a scalar field in a such a way that Robin boundary condition is implemented dynamically, i.e., as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c1c_1 and c2c_2. Some special cases are discussed; in particular, we show that for some values of c1c_1 and c2c_2 the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the λϕ4\lambda\phi^4 theory submitted to Robin boundary condition on a plate.Comment: 16 pages, 2 figures. Version 2: contains a new section on the renormalization of the two-point Green function in the presence of a flat boundary. Accepted for publication in J. Phys.

    Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2

    Get PDF
    Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs

    Scaling limits of a tagged particle in the exclusion process with variable diffusion coefficient

    Full text link
    We prove a law of large numbers and a central limit theorem for a tagged particle in a symmetric simple exclusion process in the one-dimensional lattice with variable diffusion coefficient. The scaling limits are obtained from a similar result for the current through -1/2 for a zero-range process with bond disorder. For the CLT, we prove convergence to a fractional Brownian motion of Hurst exponent 1/4.Comment: 9 page

    One Loop Multiphoton Helicity Amplitudes

    Full text link
    We use the solutions to the recursion relations for double-off-shell fermion currents to compute helicity amplitudes for nn-photon scattering and electron-positron annihilation to photons in the massless limit of QED. The form of these solutions is simple enough to allow {\it all}\ of the integrations to be performed explicitly. For nn-photon scattering, we find that unless n=4n=4, the amplitudes for the helicity configurations (+++...+) and (-++...+) vanish to one-loop order.Comment: 27 pages + 4 uuencoded figures (included), Fermilab-Pub-93/327-T, RevTe

    Colorado State University (CSU) accelerator and FEL facility

    Get PDF
    The Colorado State University (CSU) Accelerator Facility will include a 6-MeV L-Band (1.3 GHz) electron linear accelerator (linac) with a free-electron laser (FEL) system capable of producing Terahertz (THz) radiation, a laser laboratory, a microwave test laboratory, and a magnetic test laboratory. The photocathode-driven linac will be used in conjunction with a hybrid undulator capable of producing THz radiation. Here, a summary of the systems used at the CSU Accelerator Facility is discussed. The building construction is completed and equipment move-in has begun. The first beam is expected to occur by mid 2015
    corecore