11,964 research outputs found

    Atmospheric aerosols: A literature summary of their physical characteristics and chemical composition

    Get PDF
    This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis

    Laser applications to atmospheric sciences: A bibliography

    Get PDF
    A bibliography is given of 1460 references of the applications of lasers to atmospheric sciences. The subjects covered include: aerosols; clouds; the distribution and motion of atmospheric natural and man-made constituents; winds; temperature; turbulence; scintillation; elastic, Raman and resonance scattering; fluorescence; absorption and transmission; the application of the Doppler effect and visibility. Instrumentation, in particular lidar, is included, also data handling, and interpretation of the data for meteorological processes. Communications, geodesy and rangefinding are not included as distinct areas. The application to the atmosphere is covered, but not the ocean or its surface

    Aerosal studies

    Get PDF
    Various methods of measuring aerosols were studied in terms of the best methods to use, the instruments or techniques actually employed, and those techniques applied in field measurements on air quality as influenced by rocket launch effluents, and in an urban environment. Further studies were initiated on the remote sensing of aerosols by satellites and the influence of aerosols on visibility. The characterization of aerosols by measurement of scattered light was studied on Mie theory calculations

    Atmospheric particulate measurements in Norfolk, Virginia

    Get PDF
    Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events

    Determination of Atmospheric Aerosol Characteristics from the Polarization of Scattered Radiation

    Get PDF
    Aerosols affect the polarization of radiation in scattering, hence measured polarization can be used to infer the nature of the particles. Size distribution, particle shape, real and absorption parts of the complex refractive index affect the scattering. From Lorenz-Mie calculations of the 4-Stokes parameters as a function of scattering angle for various wavelengths the following polarization parameters were plotted: total intensity, intensity of polarization in plane of observation, intensity perpendicular to the plane of observation, polarization ratio, polarization (using all 4-Stokes parameters), plane of the polarization ellipse and its ellipticity. A six-component log-Gaussian size distribution model was used to study the effects of the nature of the polarization due to variations in the size distribution and complex refractive index. Though a rigorous inversion from measurements of scattering to detailed specification of aerosol characteristics is not possible, considerable information about the nature of the aerosols can be obtained. Only single scattering from aerosols was used in this paper. Also, the background due to Rayleigh gas scattering, the reduction of effects as a result of multiple scattering and polarization effects of possible ground background (airborne platforms) were not included

    High sensitivity 1.06 micron optical receiver for precision laser range finding

    Get PDF
    Aluminum gallium antimonide avalanche photodiodes with average gain of 10, internal quantum efficiency of greater than 60%, capacitance less than 0.2pf, and dark current of less than 1 micron were designed and fabricated for use in a low noise optical receiver suitable for 2 cm accuracy rangefinding. Topics covered include: (1) design of suitable photodetector structures; (2) epitaxial growth of AlGaSb devices; (3) fabrication of photodetectors; and (4) electro-optics characterization

    Effluent sampling of Scout D and Delta launch vehicle exhausts

    Get PDF
    Characterization of engine-exhaust effluents (hydrogen chloride, aluminum oxide, carbon dioxide, and carbon monoxide) has been attempted by conducting field experiments monitoring the exhaust cloud from a Scout-Algol III vehicle launch and a Delta-Thor vehicle launch. The exhaust cloud particulate size number distribution (total number of particles as a function of particle diameter), mass loading, morphology, and elemental composition have been determined within limitations. The gaseous species in the exhaust cloud have been identified. In addition to the ground-based measurements, instrumented aircraft flights through the low-altitude, stabilized-exhaust cloud provided measurements which identified CO and HCI gases and Al2O3 particles. Measurements of the initial exhaust cloud during formation and downwind at several distances have established sampling techniques which will be used for experimental verification of model predictions of effluent dispersion and fallout from exhaust clouds

    A Strong Szego Theorem for Jacobi Matrices

    Full text link
    We use a classical result of Gollinski and Ibragimov to prove an analog of the strong Szego theorem for Jacobi matrices on l2(N)l^2(\N). In particular, we consider the class of Jacobi matrices with conditionally summable parameter sequences and find necessary and sufficient conditions on the spectral measure such that k=nbk\sum_{k=n}^\infty b_k and k=n(ak21)\sum_{k=n}^\infty (a_k^2 - 1) lie in l12l^2_1, the linearly-weighted l2l^2 space.Comment: 26 page

    The 1.06 optical receiver

    Get PDF
    High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels

    The regional economic impact of more graduates in the labour market: a “micro-to-macro” analysis for Scotland

    Get PDF
    This paper explores the system-wide impact of graduates on the regional economy. Graduates enjoy a significant wage premium, often interpreted as reflecting their greater productivity relative to non-graduates. If this is so there is a clear and direct supply-side impact of HEI activities on regional economies. We use an HEI-disaggregated computable general equilibrium model of Scotland to estimate the impact of the growing proportion of graduates in the Scottish labour force that is implied by the current participation rate and demographic change, taking the graduate wage premium in Scotland as an indicator of productivity enhancement. While the detailed results vary with alternative assumptions about the extent to which wage premia reflect productivity, they do suggest that the long-term supply-side impacts of HEIs provide a significant boost to regional GDP. Furthermore, the results suggest that the supply-side impacts of HEIs are likely to be more important than the expenditure impacts that are the focus of most HEI impact studies
    corecore