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p.O" INTRODUCTION AND SUMMARY j " ~ ~ - " :

I This report describes progress toward realization of a high sensi-
it " ; ''

tivity optical receiver for precision rangefinding at 1.064ym. Overall
ii objective is 2 cm accuracy with 10-100: received photons. These requirements !
| are based on current NASA efforts to develop a spaceborne rangefinder for i
; I

geodetic surveying. Evaluation of existing detector technologies -- Si APD'sj
; and alloy photocathodes -- indicated that a new receiver approach is required
i ' ,
in order to meet these goals. A III-Vj alloy 1.06pm avalanche photodiode :

-*- : I _ •

receiver has been chosen as the most promising candidate. Principal efforts
! ; . . . , _ i
: in the present contract were focused on improving the ••performance, of ;

i . .- ' ~ '
the 1.06ym avalanche photodiode, this device being the key element in the y

receiver. These efforts resulted in AlGaSb avalanche photodiodes with average

'gains of 10, dark currents of <lya and'capacitance <0.2 pf. These photo- j

idiodes represent a significant achievement in the 1.06ym receiver technology ,1 i '
development program. Under previous contract work with NASA and Air Force ;

support (Air Force Contract F33615-74-C-1030, NASA Contracts NAS5-23333 ',

and NAS5-231.34J we.have successfully demonstrated the. 1.06vinur,ece.lver_concept-
ii :

by design and fabrication of hybrid integrated GaAs FET transimpedence '•
amplifier receivers. These APD receivers showdd 95% quantum efficiency at
l.OSym with pulse sensitivity of 379 photons (peak output voltage = rms
noise output voltage) and 10-90% risetimes of 250 ps. They demonstrated '•
that the rangefinder goals could be me,t if photodiodes of sufficient

.avalanche gain (>20) could be produced. This was the principal thrust behind
' i

, the work we report here. <> |
'; i

1 The key factor in avalanche-photodiode development is material - f
f

.quality; thus most of the program effort was devoted to material development'
!! and characterization. AlGaSb alloys were of greatest interest. Improvements
in average avalanche gain and gain uniformity were sought and, to a significant
extent, attained. Suitable epitaxial growth procedures were developed for

* f!

fabrication of high quantum efficiency, low capacitance hterojunction device '
II

designs. Device processing and packaging techniques were.designed and, to I
ii

date, partially implemented. I

1-1
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... ~The*APDs developed during the* past year provide a strong"foundation
ifrom which further development may fruitfully grow. Improvements in average '
IJgain and gain uniformity are probably desirable. Measurements of excess I
^multiplication noise need to be carried out. These measurements along with i
•suitable systems modelling will beressential in predicting the expected range!
. accuracy. j
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2.0 PROGRAM GOALS AND APPROACH

The overall objective of this, program is the development of a 1.06pm
optical receiver suitable for precision rangefinding with 2 cm accuracy and
10-100 received photons. The immediate objective of the work reported here
was the development of an avalanche photodiode with which such a receiver
could be implemented. Design goals for the APD may be summarized:
QE = 95%; 50ft impulse response (FWHM) = 100 ps; average avalanche gain = 30
(jJO% uniformity)., Stability of these; parameters with time is ojjviqusly
assumed. The APD requirements are determined by the details of the pulse
signal-to-noise ratio. These are discussed in Section 2.1. Material and
device design approaches are then described in Sections 2.2 and 2.3.

2.1 Systems Performance i

The overall objective of this program is to develop an avalanche
photodiode receiver for 1.06pm rangefinding. However, at the present time, j
very little, if any, practical experience with such a system is available. !
The key question is: "What is the range accuracy that can^be^achieved Jw.i.thM..|-
the avalanche photodiode receiver?" For nearly ideal amplifiers such as the I

i
PMT, range accuracy will be shot noise limited; this is, of course, the j
ultimate performance limit. Avalanche photodetectors, on the other hand, j
suffer from excess noise and time jitter, both intrinsic to the two-carrier i
gain process itself. These effects ar,e expected to degrade the ultimate range
accuracy to somewhat less than the shot noise limit. In addition, the usual .
thermal noise contribution to range error must be considered. Complete !
theoretical evaluation of all these noise sources is currently in a pre- j
liminary state. Here we give a simplified discussion of range accuracy; j
considering first thermal and secondly quantum noise limitations.

it
Let us consider an optical receiver with an incident number of :

photons, N ., in a light pulse on the detector. If the quantum efficiency ,
is n and the average avalanche gain is M, then the number of electrons flowing

it
in the preamp input is jj

Ne = n M Nph: (2.1)
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• and the total charge is

Qp • q n M Nph. (2.2) |

In general, such a charge pulse will produce an output voltage pulse from the
preamplifier, the peak value of which, V will be proportional to Q , -i.e., j

'The constant of proportionality or "pulse gain", (V/Q) will depend on the ;
bandwidth characteristics of the receiver and the shape of the incident pulse".
In the limit of an infinitely short (6-function) incident current pulse into;
the preamp, there is a characteristic output pulse waveform V6(t) and pulse
gain (V/QK which depend only on the preamplifier gain characteristics. j

.The response V(t) to any arbitrary input current pulse, i(t) can be obtained;
, from V6(t) by convolving i(t) with Vfi(-t). i

I In addition to the signal output pulse, the preamplifier also
i exhibits"some rms noise~output voltage?, v . If there were no= output" voltage"
noise then the receiver would give virtually unlimited time resolution when j

, followed by a constant-fraction discriminator (CFD) (limited only by jitter ;
' in the CFD and time jitter in the detector itself - which is extremely small ;
i !
! in the GaAs-,_YSbv APD). If we are trying to measure a time t at which i

I ™ A X U

' (without noise) V(t) would cross some ;1 eve 1 V , then the effect of noise is j
> to introduce an uncertainty in V(t) which at all times is given by some

f\ jJW ^! probability function. If we assume that the slope of V(t), -^ , is essentially
; constant over the region V +_ v or V + 2 vnQ, then the time uncertainty- j
• in when V(t) will actually cross V is given by the same shaped probability
: function as the voltage noise, only with the voltage horizontal scale replaced
by voltage divided by dV/dt. Hence the rms time uncertainty, AT , in I
V(t) crossing VQ is- given by ; ,!

i o -|

AT - VnoATrms " TdVT (2.4),T

V
t~t

2-2
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(where v is the rms output noise.

j; The slope (dV/dt). . can be approximated by more commonly measured
: t-io
: receiver parameters as

(2.5)= Vp/TBR,

where is the pulse risetime. Substituting Eq. 2.5 in Eq. 2.4, we have

i where it is assumed that V is considerably greater than v (the false
: alarm rate would obviously be unacceptably high if it were not, anyway).
This expression can further be related; to the preamplifier parameters
discussed earlier by substituting Eq. 2.3, giving '<

—-for -from Eqs. 2.1'arid 272

(ft
j where (V/Q) is the "pulse gain" and W the number of electrons flowing

i in the preamp input. The "minimum detectable current pulse" of the preamp,

n°OP

'N is just the number of electrons in. a current pulse required to make the 'op ':
peak output voltage equal the rms output noise. In terms of N then, Eq. 2.8

; becomes (assuming NQ considerably greater than N _) r
6 Op "

PR •

2-3
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*This can be expressed in terms of the 'number of photons in the light pulse, j
«N h, the quantum efficiency, n, and average avalanche gain, M from Eq. 2.1 by

ATAT

_
" n Mrms " n M N .

"

i Conversely, the minimum level of avalanche gain required for single pulse '

' detection of N . photons with rms time' resolution ATrms is given by •

TPR i (2-«n "
: Pn, AT" '

| ATrms J

. (valid for TpR > 2 f^rms or so). MMIf.; is a lower bound figure ignoring v

; multiplied shot noise which could be dominant for high Mis and TDD»AT „,„. 'i i rK rms j
Note that in general using fast optical pulses with a fast receiver (giving •
short TDD and lower Hnn) improves the signal-to-noise ratio and time I

rK Op '
' resolution and reduces the requirement* for high avalanche gain. J

.i, . __„ ̂  _____ J.he^meas.ured performance of t;he GaAsSb 1 .06ym_receiyers^ deve.loped,,.,.K
' under NASA Contracts NAS5-23134 and NAS5-23333 and Air Force Contract I
; ? >
, F33615-74-C-1030 can be used to obtain a numerical estimate of M..J., from !

• Eq. 2.12. For the best hybrid integrated receiver delivered under these j

i programs, n = 0.96, N0 = 379 electrons and TPR = 250 ps. 'For 2 cm accuracy, ,
i , i t\ i

= 133 ps, and so we find MMIN = 7.5 for N . = 100 photons and M..IN = 75'

nk = 10 photons. These numbers g!ive an estimate of the required avalanche
i P n ' I
;gain for signal levels of interest in this program. i

Avalanche multiplication noise is expected to degrade the range ,;
5 accuracy from the values discussed above. This effect becomes more sig- *
ii nif icant at higher gains (lower signal levels). A crude estimate of range
^accuracy degradation: can be obtained by consideration of high gain shot

; noise limited operation (neglect thermal noise). i"

Let the rectangular received pulses have width T and, on the average;,
Noh Pnotons (NDh

 = 10'10°)- Suppose the time discriminator counts photons •
f and extracts range 'information when N '. /2 have been counted. The rms single ii

2-4
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shot time uncertainty, for pure Poissoh statistics (no avalanche gain) is: :

'For a 400 ps wide pulse, 5 photons/pulse should be adequate for 2 cm range i
: accuracy (neglecting other noise sources and assuming unity quantum efficiency).
With average avalanchegain M, we find the ranger accuracy degraded to ;

! . ) __

At = T MXN/2 '
rms ««-!-^ph ;

v

where Xw is the excess noise coefficient. For, say, M = 30, and XM = 0.4 '1 X 19 IN
(appropriate actually to silicon APDs)1, we find M W ^ 2. In other words, j

i the expected limiting range accuracy will be twice as poor as would be j
expected from signal shot noise alone.. !

I i
• '...._ Fur.t her, systems modelling stijl remains to be. done.. ̂Adequate=-false, -

i! • i
'alarm rates must be established. A more accurate calculation of Poisson [
; • . I
i limited range accuracy is needed. This will include a realistic model :
i of the discriminator and a more extensive APD model. The latter must include!
fluctuations in amplitude and time origin of the multiplied charge. ;i

12.2 Materials • \

•• The heteroj unction I I I -V alloy materials technology provides the only

viable approach to fabricating photodiodes sui table for precision LOSym ;
] rangef ind ing . Figure 2.1 shows the bahdgap and lattice constant of the princ-iple
ii binary I I I - V ' s and their ternary alloys. For operation at 1.064ym (1.17 eV) ii
i'we require an active absorbing layer with bandgap of « 1.1 eV. Smaller gap "
;* |j

results in excess dark current; larger' bandgap results in low quantum effi- ji
.ciency. GalnAs, InGaAsP and GaAlSb; of these four only the latter two can be.
grown on lattice matched substrates (InP and GaSb). At present, the material;
quality of the quaternary InGaAsP is not established. On the other hand, ^
'our previous work oh AlGaSb l.Sym photocathodes (NVL Contract No. DAAK03-73-C-0231)

2-5
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; had demonstrated that device quality multilayer structures with control led""'

f doping could be fabricated from AlGaSb alloys. Thus we elected to develop
!| this material for l.OSym avalanche pho'todiodes. )
I' » i •

' The experimentally determined AlGaSb band structure over the whole
f 1 \

; range of compositions is shown in Fig.1 2.2.* ' This diagram is relatively i
well established except at the AlSb end, where the ordering of the X i

; and L minima is still uncertain. For most of the alloy composition range, it-
j is seen that AlGaSb is an indirect semiconductor with L (or X) conduction band
""minima. Fabrication of high performance heterojunction photodiodes requires \

l

! two alloy layers: the first, active 1'ayer, must strongly absorb (~ l-2ym i
i

absorption depth) at 1.064ym; the second, window layer, must have zero j
absorption at 1.064ym. Reference to F;ig. 2.2 shows that alloys with 23-30% <

'AlSb have suitable direct (r) minima for absorber layers, while those with i
j 35-40% AlSb can serve as transparent window layers. The other details of the
I band structure are largely irrelevant to APD design. The actual separations ;
'. and orderings of the 3 non-equivalent conduction band minima may well influence

; the-microscopiC; electron and hole ionization rates, but -the band structure j~
obviously cannot be altered to provide more favorable avalanche gainl

°,
2.3 Device Design i

5: A suitable device structure may be based on the materials available.!

j One such design is shown in Fig. 2.3. ;This structure contains (1) buffer layer

! of 11.5% AlSb, (2) field termination layer of p+ Ga77Al~,Sb, (3) active depleted
» ., / / t*3 . i

Mayer of n~ Ga77Al23Sb, (4) window layer, transparent to 1.06ym,of GaggAl^Sb.

• With suitable anti reflection coating on the Ga J\l *Sb surface virtually 100%,
- 4 7; of all incident photons can be rapidly (transit time ~ 5x10" cm/10 cm/s = 50 ps)

'collected by. the n~ layer. This layer is fully depleted at operating bias. The
i

parallel equipotentials and strong optical absorption ensure an rms transit
time dispersion of less than — — — = 7.07 ps (at unity gain). i

', The device structure shown in- Fig. 2.3 offers virtually 100% quantum;
•efficiency, minimum excess multiplication noise, no diffusion tail or "back |
porch," and immunity to surface breakdown. At operating bias, as noted above-,

'the n~ layer is fully depleted; thus all incident carriers immediately see the

2-7
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hv = 1.06um

n Ga.60A1.40Sb

PGa .77A1 .23Sb

PGa.875A1.125Sb

p GaSb

Fig. 2.3 AlGaSb APD Structure. Enough Al is added to top window
layer to attain virtual 100% quantum efficiency.
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.large junction potential. The resultant photocurrent is ideally "pure" in

'that it consists entirely of holes (in this case). This situation results
b

in the least excess multiplication noise, assuming, of course, that $ > a '
•• (3 = hole ionization rate, a = electron ionization rate, both in cm" ). If >
! 3 < a, obviously the complementary structure would be grown. The p /n~ j
i ,-

I layer sequence yields a device geometry which should be immune to surface ;

; breakdown. Mesa diodes have a cross-section which increases as one moves <

j away from the top surface of the mesa. This geometrical factor, combined '

fwith" the Tayer s'equence of Fig. 2.3, results in surface electric fields con-

' siderably lower than the bulk fields. -Thus uniform bulk avalanche results. •

2-10
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j 3.0 RESULTS

5 This contract work resulted in the^first AlGaSb 1.06ym avalanche •
jphotodiodes ever fabricated. Average gains of 10 were observed. The materials
;work and device fabrication technologies developed to support this are describedi
jhere. Detailed measurements on the photodiodes are described. Some prelimi-j

nary background on avalanche photodiode performance and characterization are j

first given. ; ;
'; 1

"~ 3

3.1 Avalanche Photodiode Performance and Characterization jj

e.
The key parameters in avalanche photodiode performance are the

'.average multiplication, multiplicationlareal uniformity and excess multiplicaf
' ! *

ition noise. These quantities and suitable theoretical descriptions are
reasonably well developed for silicon avalanche detectors^ . However, for

iIII-V compound and III-V alloy detectors complete descriptions of avalanche
Iperformance do not exist; in fact, considerable discrepancies are found in
1 I » •

jthe available literature. Neither is,it clear whether the physics of avalanche
l_ ____ _,,.-&_^ _.„ __ _________ ___ __! ____ . _ a _^ __ _______ ____

•niuTtfi plication Ts significantly different in polar III-V alid elemental semi-

con ductors. i ; i
' !

The avalanche gain, M, is simply the ratio of the measured photo--
current at bias V to the primary photocurrent at the same bias '

I : '.
, (3.1) '

;For experimental purposes the avalanche diodes are designed so that the primary
; photocurrent is both independent of bias and composed either of holes or ;
'electrons but not both; one then measures the fundamental hole and electron •
iimulti plications. These two quantities, denoted by M and M , can always be \
^measured by growing and testing two complementary diodes, i.e., n on p and ;

ip on n. In general, one would find M -j M and then practical diodes are :
'of course fabricated using the favorable carrier. In some cases, one can !
("arrange to measure M and M in the same diode. Since E(V) is then known for.; ; n p /., ~~ '
Jboth measurements, they can then be used determine the microscopic ioniza- \

Ltion-rates-a(electrons) and g holes, both expressed in cm .— - ------ •— -
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The measured multiplications are expressed in terms of these
quantities as follows (W = depletion width):

w -jf (-3)dx'

- 7-r- = / a 6
M •/

dx

(3.2)

MP

dx

;By assuming the ionization rates are local in character (i.e. dependent on
•field only), these equations can be inyerted to express a and 3 in terms of

^ ' . The ionization rate ratio a/3 influences considjthe measured M and M
jerably the measured photodetector properties. For a diode with constant
jfield depletion region (p-i-n structure) we have"

M = ' -if £.:- 1
n f - aw n T a '

M = eaw if £••= 0a •;
(3.3)

jlThese two characteristics are plotted in Fig. 3.1.; the advantages of e/a=0
[i • -
|are obvious. A material with small a/e is clearly desirable for fabrication
'of large area avalanche diodes. All else being equal, such a material would I

:be preferred over a material with 3/a « 1. I

! The ionization rate ratio also influences the noise performance |
'of the photodiode. Again the case e/a = 0 is preferred and leads to current J
|amplification with the smallest decrease in signal-to-noise ratio (shot noise

\

3-2
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,,only). For all cases, the variance of the multiplied signal is increased by

:the excess noise factor F(M):

<i> = 2qnl . M F(M) Af,

.where F(M) is given by (electron multiplication)

(3.4)

F(M) = (2 - (3.5)

For the ideal case 3/a = 0, we find only a 3dB reduction in signal-to-noise

ratio. For the other limiting case, B/a = 1, the signal-to-noise ratio is

(decreased by 1/M. These results seem to be verified by experimental work on

;silicon APDs. However, for III-V detectors (GaAs, InGaAs), the excellent

reported noise performance is at variance with the measured ionization

rates^ ' ' ' . Further measurements are required.

v— - Another potentially important source of noise 4n -avalanche--detee-

tors are the gain non-uniformities commonly observed in practical devices.

Equations 3.4 and 3.5 of course describe the properties of a perfectly uni-

form diode. For a non-uniform diode, uniformly illuminated over its area A,

we have

-I

L_=l ff ^L
Fav A JJ M2- 'av

(3.6)
av

where M(x,y) is the local gain at point (x,y). F/F;-- is simply the ratio ofav
iithe actual excess noise factor to the noise factor for a uniform diode with

;the same average gain, M . It thus represents the increase in noise due to

gain non-uniformities.

Numerical results were obtained for a simple square photodiode

,with sinusoidal gain variation: <
i

L . M(x,y) = M,v + AM sin(^-x) 0<x,y<a ~-
dv a
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The results are shown in Fig. 3.2. With an average gain of

!20±50% (gain varying between 30 and 10) we pay a penalty of about 1 dB in

(increased shot noise. This would probably be acceptable for rangefinder

I applications.

From this discussion, a program of research leading to useful

1.06ym AlGaSb avalanche detectors can be evolved. In order of importance

the pertinant tasks are:

; 1) Develop material technology for hole and electron multipliers.

2) Evaluate gain and gain uniformity for both multipliers.

3) Measure F(M) for hole and electron multipliers

i 4) Evaluate expected rangefinder receiver accuracy.

! 5) Measure microscopic ionization rates a and B.

jThe following sections describe our efforts, partly completed to date, toward
i

iachieving the goals of this program.
,

3.2 Materials Growth and Evaluation

l.OSym AlGaSb APD work requires growth of layers with 11.5-15%
!AlSb (buffer layer), 23-30% AlSb (active layer), and 35-40% AlSb (window

payer). Growth procedures for fabricating individual and multiple layer
i ' s
Structures of these compositions were devised, n and p-type doping was
(established as required. Finally, measurements of optical transmission of the
'active absorbing layer were carried out-

Liquid phase epitaxy was used to fabricate all AlGaSb structures, j
.Semitransparent furnaces were essential in this work. It was found that \
[precise control of the degree of melt supersaturation is necessary in thei p
growth of planar, micron scale AlGaSb epitaxial material. With the transparent

fi

.furnace, this control could easily be attained through visual observation of ;
"i

;the melts. A two-tier, multi-well, graphite boat-slider arrangement with j

'magnetic coupling was used to carry out the growths.

r
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\ The starting points for our materials work on this program were
I t IV A

the liquidus and soliidus phase diagrams shown in Fig. 3.3 and 3.4(1). From

*these curves, for example, we can determine that, at 500 C, for the active

flayer of 23% AlSb, we need XAI ^ 0.01 and $sb =0 .028 in the liquid. Further!

irefinement of the liquidus data for the three layers (buffer layer, active

layer, window layer) was found to be necessary to attain good quality planar

[structures. The result of this work was a precise temperature and melt compoj-

sition recipe suitable for fabrication of 4-layer AlGaSb APD structures.

The results are shown in Fig. 3:5 and 3.6 illustrating respectively

,'the as-grown surface and cross-section of a typical growtlY. The excellent |

;surface morphology and layer planarity are to be noted. Further details of
TO

'the AlGaSb surface morphology are shown in Fig. 3.7. Growth was accomplished

,by slow cooling of appropriately supersaturated melts. Typical growth rates

iof >. 2ym/min were attained. The high solute concentration (compared with

JGaAs growth) yields these fairly rapid.growth rates.

]__ __!!?? minority carrier density and carrier density_urnJ^j^Hyjqf__tJie
;active n" layer is one key parameter in AlGaSb APD design. Attainment of

i5xlO - 10 average electron density:is necessary for low capacitance

devices; doping uniformity is clearly of great significance in achieving

juniform avalanche gain. Attaining these low electron densities in the GaSb/

jAlGaSb material system requires careful compensation of the normally p-type

^material. Growth of GaSb and AlGaSb from Ga rich melts (normal conditions)

'results in material with a point defect induced background hole density of

-- 2x10 cm~ . Thus, in compensated material the average net electron density!
t.is

17n = Nd - 2x10

•and the allowable tolerance in N , is

'AN

3-7-
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Fig. 3.5 Four layer Al Ga, Sb APD structure. Note excellent growth morphology.
X I "" A
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Fig. 3.6 Cleaved cross-section (stained) of four layer 1.06um Al Ga, Sb APD.

Layers grown on n+ GaSb substrate are: n Al n5Ga 885Sb/n"Al 23Ga 7ySb/
p+ Al .23Ga.77Sb/p A1.4Ga.6Sb-
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-j-j- is the fractional run-to-run variation in electron density.

By extremely careful control, n~ doping densities of 5x10 -
1x10 cm" have been achieved in 23% AlSb material. These are fairly repro-

ducible. The donor used is tellurium, in the form of Te doped GaSb substrate
material. The doping profile of a typical low doped n" layer is shown in
Fig. 3.8 (from C-V analysis of p n~ junction). The non-uniform profile
suggests tellurium depletion as the growth proceeded. Run-to-run doping
reproducibility is limited by the accuracy with which the Te can be weighed.
From Eq. 3.7, for reproducible (An/n « 0.2) growth of 5x10 material, we can
tolerate no more than 0.5% fluctuation in N,. For growth of 23% AlSb layers

from appropriate melts, this means that we must weigh out 1 mg ± 5yg of
GaSb:Te. For this measurement, a Cahn "Gram" electrobalance was used. On

the 0-1 mg scale we have found that this balance can be read to < ± 2yg
precision; thus adequate run-to-run reproducibility is available.

Also of great significance is the doping uniformity over the
active area of the device. Pertinant numerical calculations are shown in

Fig. 3.9. For average avalanche gains of 20-30, we require that the net

doping density in the active layer vary by not more than 0.5-1.0% over the
g

active area. Larger fluctuations lead to unacceptable non-uniformities in

avalanche gain. Resistivity profiles with micron spatial resolution can be

obtained by using photovoltage techniques.

Further, less critical doping measurements were carried out on the
buffer layer (11.5% AlSb), termination layer (23% AlSb) and window layer

(35% AlSb); other measurements were also carried out on GaSb itself. For the
p window layer and termination layer, Ge was used; the distribution coefficient

of Ref. 1 gave satisfactory results. Te doped buffer layers with about 2x10

net donor density were used. Studies on these layers and on pure n-type GaSb

layers show that considerably more Te must be supplied to the melt to obtain
the same doping as the higher AlSb layers. An order of magnitude more Te is

required for GaSb than for Ga 7yAl 23Sb> Tnis 1S a result °f a change in
background hole concentration or Te distribution coefficient.
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The most important elementary material parameter for photodetector
design is the optical absorption, a (not to be confused with the electron
ionization rate, also denoted by ex). Typically, for most materials systems
this parameter is measured routinely, and material composition and depletion
region thickness simultaneously adjusted to give the desired quantum efficiency
(qe). For a 5/im thick depletion region, and 95% qe, we need a=0.6xlO ctif .

Cj

Smaller a gives low qe; larger a results in larger dark currents. A
serious problem arises when trying to measure the transmission of layers of
AlGaSb: the GaSb substrate is opaque at the wavelengths of interest. The
same problem arises when measuring the optical transmission of AlGaAs alloys,
of great interest for solar cell application.

(9)A new heterojunction device was designed^ ' to facilitate optical
transmission measurements on these and other alloys; this device is shown
in Fig. 3.10. The short circuit photocurrent of the p-n junction gives a
direct measure of the optical absorption of the top AlGaSb layer via the
relation

T _ T -a(A)t
sc o

While the structure in Fig. 3.10 is in fact relatively easy to grow, and

utilizes a simple hpmojunction p-n junction, time limitations have prevented

us from fabricating it and carrying out the measurements.

A simpler, less accurate approach to making the transmission

measurements is shown in Fig. 3.11. With this approach (barrier layer omitted),

the photocurrent consists of'transmission and diffusion components. We have,

for large-surface recombination velocity (typical of III-V's), -;

I diffusion
I transmission a I a - 1 a + 1
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Fig. 3.10 Heterojunction device structure for optical transmission measurements,
The photocurrent measured in the GaSb p-n junction is due solely to
light transmitted through the top Ga, Al Sb layer.
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Fig. 3.11 p-n junction structure for optical transmission measurement.
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where L = minority carrier diffusion length.
a = optical absorption coefficient, in units of 1/L
a = layer thickness, units of 1/L

From study of this equation we see that (for layer thickness at least 2 or 3
\ A . . .

—"> diffusion lengths) the diffusion component is small as long as a < 1/L. Thus,
usable direct gap measurements can be made in material with small diffusion
length.

^3.3 Device Processing
For high speed receiver applications small area mesa diodes have

to be fabricated and packaged in 50ft-microwave mounts or hybrid integrated .
with a low noise preamplifier. This poses some special, but not insurmountable,
problems for AlGaSb detectors. For these devices, light must be brought in
through the mesa side and consideration needs to be given to fabricating a
diode with a small junction diameter but adequate optical area.

The diode structure fabricated under the current program is shown
in Fig. 3.12. Contacts are evaporated, and then 3 mil x 3 mil mesas are
chemically etched. Mesa contact is 1 mil diameter. These diodes have been

U.

useful for test purposes, but the 1 mil mesa metalization is too small for
wire bonding. •

A new set of masks to solve this problem has been designed and
fabricated. The resulting mesa diodes are shaped into "figure eights" with
one pad for wire bonding(and one pad for optical reception. The specifica-

-^ tions for these test diodes, and a "standard" GaAsSb 3 mil diameter mesa diode
-t-

—s> are shown in Table 3.1. All the diodes in this table can be bonded; the AlGaSb
devices differ in optical and/or electrical areas. This table shows that
practical AlGaSb device structures can be designed. The electrical area
required for bonding is small but, unfortunately, not zero. Note also that

—> the diode capacitance in practice is in parallel with the preamp input
capacitance. For receivers suitable for low noise 2 cm rangefinding this
latter capacitance is about 0.28pF.
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Fig. 3.12 Etched mesa -- 3 mil x 3 mil with 1 mil metallization pad,
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GaAsSb

AlGaSb I

AlGaSb II

AlGaSb III

AlGaSb IV

Optical diameter

3 mil
2 mil
2 mil

3.1 mil

2.5 mil

Calculated
Capacitance (

0.14 pf

0.13 pf
0.17 pf
0.26 pf
0.17 pf

Table 3.1 Specifications for new AlGaSb devices.

Achieving the high quantum efficiency available requires a suitable
antireflection coating. The optical dielectric constant of Al Ga 77Sb is

• c.3 • / /

11.21 (n = 3.35). Sputtered films of Si-N. (n = 2.0) are easily prepared

and give a good index match to air. A 1325A thick Si_N. film on Alp^Ga77Sb

will have 0.8% reflectivity at 1.06ym. This should be adequate.

4 Device Performance

Three and four layer AlGaSb APD's were fabricated as outlined

above. Measurements of I-V, C-V , photoresponse and avalanche multiplication

were made. Preliminary work on multiplication noise was also carried out.

The three layer AlGaSb structure fabricated is shown in Fig. 3.13. The four
layer devices were similar, with the addition of a transparent p AKcGagrSb
layer. These structures, with the layer sequence shown in Fig. 3.13 are ideal
for multiplication measurements. Practical diodes would probably use the
opposite sequence of layers as illustrated in Fig. 3.2. All multiplication
measurements made were electron multiplication; time did not permit investi-
gation of hole multipliers.

The capacitance-voltage characteristic of our best reproducible
device is shown in Fig. 3.14. Capacitance near breakdown for this 3 mil K
3 mil device is less than O.lSpF. For a 3 mil diameter circular mesa this
material would give a capacitance of 0.147 pF. Our best 3 mil GaAsSb diodes
have junction capacitance of 0.11 pF^ . Thus, the AlGaSb devices are good,
but not yet equivalent to the best GaAsSb results.
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Fig. 3.13 AlxGa1_xSb APD structure,
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Fig. 3.14 C-V for 3 mil x 3 mil AlGaSb APD.
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The relative quantum efficiency of three-layer and four layer

AlGaSb APD structures is shown in Fig. 3.15 and 3.16, respectively. These

results are obtained using the Cary-14 monochrometer with a feedback circuit

to maintain constant light intensity. The long wavelength cut-on is similar

in both devices and is determined by the bandgap of the Al 23Ga 77Sb. The

short wave response of the 4 layer structure is enhanced by the transparent

window. Absolute quantum efficiency (corrected for reflection loss) of this

device at 1.064ym was measured to be 60%.

Avalanche gain measurements are carried out with our laser scanning

microscope. The 1.064 m Nd:YAG beam is focused with a 0.5 na, 40X, 1.7cm

reflective objective. The long working distance lens allows measurements to

be made on probe contacted (i.e. unpackaged) devices. The focused beam is

scanned across the device active area using moving coil mirrors. In this

fashion area displays of avalanche gain with spatial resolution of 2-3ym

(limited by lateral diffusion of carriers) can be obtained.

Avalanche gain and leakage current for a typical good device

(Fl0-8/31/76) are shown in Fig. 3.17. Device is a 3 mil x 3 mil mesa. These

measurements were made with the laser beam chopped at 1600 Hz. The multipli-

cation is that representative of the area averaged gain; maximum average gain

is about 10. Leakage current near breakdown is less than lya. Other material

with good reverse leakage and higher breakdown was fabricated. A I-V character-

istic of a good "high voltage" diode is shown in Fig. 3.18. Diodes with

breakdown of 110V have been fabricated, but these showed ~ 6ya reverse

leakage current near breakdown.

Measurements were made of the pulse response of the AlGaSb avalanche

photodiodes. These were carried out with the Q-switched Nd:YAG laser. Since

our devices were unpackaged, measurements with mode-locked signal were not

considered. The APD pulse response with the without gain (low and high bias)

is shown in Fig. 3.19. Avalanche gain here is about 17. For these measure-

ments, the beam was focused near a high gain region; thus the area average

gain on this device was somewhat lower.
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Fig. 3.18 High breakdown AlGaSb photodiode; growth F10-9/23/76.
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Fig. 3.19 APD pulse response. Diode from growth F9-4/23/76.

3-29



Rockwell International

SC5046.25FR Scien"Center

All avalanche photodiodes show some gain non-uniformities. These

gain non-uniformities can increase the excess multiplication noise, and of

course cause drift in the return signal amplitude. The latter is less serious

for rangefinder applications than for digital communication systems.

Linear scans through four separate devices from growths F10-5/24/76

and F10-8/31/76, Fig. 3.20 and 3.21, indicate the present state-of-the-art

in AlGaSb detectors. These detectors are characterized by the broad scale non-

uniformities shown. Doping fluctuations or compositional variations could be

responsible for these gain non-uniformities.

Avalanche multiplication noise measurements were not completed

during the course of this contract; however effort was spent on design and

construction of a suitable instrumentation system. This is discussed here.

The quantity of interest is 'the excess noise factor F(M); tJ^

experimentally observable quantity is the mean square photodiode noise current

in bandwidth Af:
o

= 2qM2F(M)nIphAf + (2ql + + 5 ) A f .

I . = incident photon current.

n = detector quantum efficiency.

I, , = detector dark current.

Rf = trans impedance.

S . = spectral density of pick-up noise.

<>.w
Accurate noise measurements then require that the unmulti plied photocurrent

shot-noise clearly dominate the noise due to detector surface leakage, the

receiver input noise, and the pickup noise. To ensure this condition a wide

dynamic range, wide bandwidth transimpedance amplifier was designed and

constructed. This unit has an order of magnitude better dynamic range than

our commercially available current amplifier (Keithley 427). A filtered

tungsten ribbon filament lamp is a suitable low-noise light source for these

measurements^ . This source has a maximum brightness (200A filter) of about
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(a)

(b)

F1g. 3.20 Linear scans showing gain in 3_mil dia. mesa devices from growth
Fl0-5/24/76.(a) M = 8.5; (b) M = 12.
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(a)

(b)

Fig. 3.21 Gain profiles_from growth_Fl0-8/21/76.
devices, (a) M = 10; (b) M = 17.5

3 mil x 3 mil square mesa
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0.91 —2— anc' can Provide 3.6yw of optical power in a 1 mil diameter focus

(0.5 fimmirT£al aperture). This flux density is enough to dominate the photo-

diode dark current, reciever thermal noise, and with suitable packaging,

the stray noise. Note than an appropriately tuned high-brightness LED might

be a considerably better source for these noise measurements. These diodes
2

have brightnesses of >50 watts/cm -str., and will become available to us

through our Air Force contract work.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

The major conclusion of this work is that useful l.OSym avalanche
photodiodes can be fabricated from AlGaSb ternary alloys. Under the current
program we have developed diodes with average gains of 10, dark currents less
than lya, and junction capacitance less than 0.2 pf. At the start of this work,
no p-n junction diodes of Al p~Ga Sb had been fabricated by anyone. We
developed the material and device processing technologies to support these
accomplishments. The work performed under this contract provides a promising
foundation for fabrication of the 1.06ym rangefinder receivers.

Efforts now need to be focussed on (1) hole multipliers, (2) gain

uniformity, (3) excess noise factor, and (4) systems modelling. There is
reason to believe that the band structure of Al 23̂ 3 77Sb favors hole multi-
plication (e < a). Thus, structures complementary to those fabricated under
this program need to be tested. Work needs to be aimed at practical diodes
that can be packaged into high-speed mounts (or receivers). These diodes must
then be completely characterized: gain, gain uniformity, excess noise quantum
efficiency, and risetime are the key parameters. These data can then be
utilized in suitable simulations to determine the expected accuracy of avalanche
detector-based receiver. We strongly recommend that these tasks be undertaken.

The results of the current program suggest a high probability that they will
lead to APDs suitable for precision 1.06ym rangefinding.
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