50,987 research outputs found

    GdRh2_2Si2_2: An exemplary tetragonal system for antiferromagnetic order with weak in-plane anisotropy

    Full text link
    The anisotropy of magnetic properties commonly is introduced in textbooks using the case of an antiferromagnetic system with Ising type anisotropy. This model presents huge anisotropic magnetization and a pronounced metamagnetic transition and is well-known and well-documented both, in experiments and theory. In contrast, the case of an antiferromagnetic XX-YY system with weak in-plane anisotropy is only poorly documented. We studied the anisotropic magnetization of the compound GdRh2_2Si2_2 and found that it is a perfect model system for such a weak-anisotropy setting because the Gd3+^{3+} ions in GdRh2_2Si2_2 have a pure spin moment of S=7/2 which orders in a simple AFM structure with Q=(001){\bf Q} = (001). We observed experimentally in M(B)M(B) a continuous spin-flop transition and domain effects for field applied along the [100][100]- and the [110][110]-direction, respectively. We applied a mean field model for the free energy to describe our data and combine it with an Ising chain model to account for domain effects. Our calculations reproduce the experimental data very well. In addition, we performed magnetic X-ray scattering and X-ray magnetic circular dichroism measurements, which confirm the AFM propagation vector to be Q=(001){\bf Q} = (001) and indicate the absence of polarization on the rhodium atoms

    Comparison of regional blood flow values measured by radioactive and fluorescent microspheres

    Get PDF
    Fluorescent microspheres (FM) have become an attractive alternative to radioactive microspheres (RM) for the measurement of regional blood flow (RBF). The aim of the present study was to investigate the comparability of both methods by measuring RBF with FM and RM. Eight anaesthetised pigs received simultaneous, left atrial injections of FM and RM with a diameter of 15 mum at six different time points. Blood reference samples were collected from the descending aorta. RBF was determined in tissue samples of the myocardium, spleen and kidneys of all 8 animals. After radioactivity of the tissue samples was determined, the samples were processed automatically for measuring fluorescence using a recently developed filter device (SPU). RBF was calculated with both the isotope and spectrometric data of both methods for each sample resulting in a total of 10,512 blood flow values. The comparison of the RBF values yielded high linear correlation (mean r(2) = 0.95 +/- 0.03 to 0.97 +/- 0.02) and excellent agreement (bias 5.4-6.7%, precision 9.9-16.5%) of both methods. Our results indicate the validity of MS and of the automated tissue processing technique by means of the SPU. Copyright (C) 2002 S. Karger AG, Basel

    A modified Oster-Murray-Harris mechanical model of morphogenesis

    Get PDF
    There are two main modeling paradigms for biological pattern formation in developmental biology: chemical prepattern models and cell aggregation models. This paper focuses on an example of a cell aggregation model, the mechanical model developed by Oster, Murray, and Harris [Development, 78 (1983), pp. 83--125]. We revisit the Oster--Murray--Harris model and find that, due to the infinitesimal displacement assumption made in the original version of this model, there is a restriction on the types of boundary conditions that can be prescribed. We derive a modified form of the model which relaxes the infinitesimal displacement assumption. We analyze the dynamics of this model using linear and multiscale nonlinear analysis and show that it has the same linear behavior as the original Oster--Murray--Harris model. Nonlinear analysis, however, predicts that the modified model will allow for a wider range of parameters where the solution evolves to a bounded steady state. The results from both analyses are verified through numerical simulations of the full nonlinear model in one and two dimensions. The increased range of boundary conditions that are well-posed, as well as a wider range of parameters that yield bounded steady states, renders the modified model more applicable to, and more robust for, comparisons with experiments

    Developing a partcipatory approach to seed production and varietal selection

    Get PDF
    The performance of UK winter wheat varieties was tested under organic conditions involving farmer participation. Three breadmaking varieties (Hereward, Solstice and Xi19) and their mixture (1:1:1) were grown at 19 UK farms in 2003/04 and 2004/05. The variability of productivity on organic farms was illustrated with more variation among farm sites than among varieties. Seed health was generally high over all sites. Although the trials were successful, more time was needed at project initiation to improve farmer involvement. Some farmers expected more researcher visits, and were reticent about assessing the trials themselves. In contrast, some participants valued the variety performance data on their farms particularly when related to that of other growers. The balance between the goals of the researchers relative to the farmers needs to be defined at project initiation

    Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis

    Get PDF
    We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation

    Spatial and spatio-temporal patterns in a cell-haptotaxis model

    Get PDF
    We investigate a cell-haptotaxis model for the generation of spatial and spatio-temporal patterns in one dimension. We analyse the steady state problem for specific boundary conditions and show the existence of spatially hetero-geneous steady states. A linear analysis shows that stability is lost through a Hopf bifurcation. We carry out a nonlinear multi-time scale perturbation procedure to study the evolution of the resulting spatio-temporal patterns. We also analyse the model in a parameter domain wherein it exhibits a singular dispersion relation

    High efficiency photon counting using stopped light

    Full text link
    Single-photon detection and photon counting play a central role in a large number of quantum communication and computation protocols. While the efficiency of state-of-the-art photo-detectors is well below the desired limits, quantum state measurements in trapped ions can be carried out with efficiencies approaching 100%. Here, we propose a method that can in principle achieve ideal photon counting, by combining the techniques of photonic quantum memory and ion-trap fluorescence detection: after mapping the quantum state of a propagating light pulse onto metastable collective excitations of a trapped cold atomic gas, it is possible to monitor the resonance fluorescence induced by an additional laser field that only couples to the metastable excited state. Even with a photon collection/detection efficiency as low as 10%, it is possible to achieve photon counting with efficiency approaching 100%.Comment: 4 page

    Observability of radiation pressure shot noise in optomechanical systems

    Full text link
    We present a theoretical study of an experiment designed to detect radiation pressure shot noise in an optomechanical system. Our model consists of a coherently driven optical cavity mode that is coupled to a mechanical oscillator. We examine the cross-correlation between two quadratures of the output field from the cavity. We determine under which circumstances radiation pressure shot noise can be detected by a measurement of this cross-correlation. This is done in the general case of nonzero detuning between the frequency of the drive and the cavity resonance frequency. We study the qualitative features of the different contributions to the cross-correlator and provide quantitative figures of merit for the relative importance of the radiation pressure shot noise contribution to other contributions. We also propose a modified setup of this experiment relevant to the "membrane-in-the-middle" geometry, which potentially can avoid the problems of static bistability and classical noise in the drive.Comment: 12 pages + 4 page appendix, 10 figure
    • …
    corecore