11 research outputs found

    Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure

    Get PDF
    Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak approx. 50 copies cell−1) compared with other clock genes, and threefold higher levels of LHY RNA (more than 1500 copies cell−1) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focused timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible

    Analysis of Phase of LUCIFERASE Expression Reveals Novel Circadian Quantitative Trait Loci in Arabidopsis

    No full text
    In response to exogenous rhythms of light and temperature, most organisms exhibit endogenous circadian rhythms (i.e. cycles of behavior and gene expression with a periodicity of approximately 24 h). One of the defining characteristics of the circadian clock is its ability to synchronize (entrain) to an environmental rhythm. Entrainment is arguably the most salient feature of the clock in evolutionary terms. Previous quantitative trait studies of circadian characteristics in Arabidopsis (Arabidopsis thaliana) considered leaf movement under constant (free-running) conditions. This study, however, addressed the important circadian parameter of phase, which reflects the entrained relationship between the clock and the external cycle. Here it is shown that, when exposed to the same photoperiod, Arabidopsis accessions differ dramatically in phase. Variation in the timing of circadian LUCIFERASE expression was used to map loci affecting the entrained phase of the clock in a recombinant population derived from two geographically distant accessions, Landsberg erecta and Cape Verde Islands. Four quantitative trait loci (QTL) were found with major effects on circadian phase. A QTL on chromosome 5 contained SIGNALING IN RED LIGHT REDUCED 1 and PSEUDORESPONSE REGULATOR 3, both genes known to affect the circadian clock. Previously unknown polymorphisms were found in both genes, making them candidates for the effect on phase. Fine mapping of two other QTL highlighted genomic regions not previously identified in any circadian screens, indicating their effects are likely due to genes not hitherto considered part of the circadian system

    Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi

    No full text
    Circadian clocks are important regulators of behavior and physiology. The circadian clock of Drosophila depends on an autoinhibitory feedback loop involving dCLOCK, CYCLE (also called dBMAL, for Drosophila brain and muscle ARNT-like protein), dPERIOD, and dTIMELESS. Recent studies suggest that the clock mechanism in other insect species may differ strikingly from that of Drosophila. We cloned Clock, Bmal, and Timeless homologs (apClock, apBmal, and apTimeless) from the silkmoth Antheraea pernyi, from which a Period homolog (apPeriod) has already been cloned. In Schneider 2 (S2) cell culture assays, apCLOCK:apBMAL activates transcription through an E-box enhancer element found in the 5\u27 region of the apPeriod gene. Furthermore, apPERIOD can robustly inhibit apCLOCK: apBMAL-mediated transactivation, and apTIMELESS can augment this inhibition. Thus, a complete feedback loop, resembling that found in Drosophila, can be constructed from silkmoth CLOCK, BMAL, PERIOD, and TIMELESS. Our results suggest that the circadian autoinhibitory feedback loop discovered in Drosophila is likely to be widespread among insects. However, whereas the transactivation domain in Drosophila lies in the C terminus of dCLOCK, in A. pernyi, it lies in the C terminus of apBMAL, which is highly conserved with the C termini of BMALs in other insects (except Drosophila) and in vertebrates. Our analysis sheds light on the molecular function and evolution of clock genes in the animal kingdom

    Partners in Time: EARLY BIRD Associates with ZEITLUPE and Regulates the Speed of the Arabidopsis Clock1[W][OA]

    Get PDF
    The circadian clock of the model plant Arabidopsis (Arabidopsis thaliana) is made up of a complex series of interacting feedback loops whereby proteins regulate their own expression across day and night. early bird (ebi) is a circadian mutation that causes the clock to speed up: ebi plants have short circadian periods, early phase of clock gene expression, and are early flowering. We show that EBI associates with ZEITLUPE (ZTL), known to act in the plant clock as a posttranslational mediator of protein degradation. However, EBI is not degraded by its interaction with ZTL. Instead, ZTL counteracts the effect of EBI during the day and increases it at night, modulating the expression of key circadian components. The partnership of EBI with ZTL reveals a novel mechanism involved in controlling the complex transcription-translation feedback loops of the clock. This work highlights the importance of cross talk between the ubiquitination pathway and transcriptional control for regulation of the plant clock

    Data, Code and Models for Flis et al. RS Open Biology 2015

    No full text
    Provides URLs to the Data, Code and Models for Flis et al. RS Open Biology 2015 article entitled, "Defining the robust behaviour of the plant clock gene circuit with absolute RNA timeseries and open infrastructure".Our understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue. In addition to providing reference data, unexpected behaviours included co-expression of PRR9 and ELF4, and regulation of PRR5 by GI. Absolute RNA quantification revealed low levels of PRR9 transcripts (peak ~50 copies/cell) compared with other clock genes, and three-fold higher levels of LHY RNA (>1500 copies/cell) than of its close relative CCA1. The data are disseminated from BioDare, an online repository for focussed timeseries data, which is expected to benefit mechanistic modelling. One data subset successfully constrained clock gene expression in a complex model, using publicly-available software on parallel computers, without expert tuning or programming. We outline the empirical and mathematical justification for data aggregation in understanding highly-interconnected, dynamic networks such as the clock, and the observed design constraints on the resources required to make this approach widely accessible.Citations are detailed for each URL listed below

    ELF4 Is Required for Oscillatory Properties of the Circadian Clock1[W]

    Get PDF
    Circadian clocks are required to coordinate metabolism and physiology with daily changes in the environment. Such clocks have several distinctive features, including a free-running rhythm of approximately 24 h and the ability to entrain to both light or temperature cycles (zeitgebers). We have previously characterized the EARLY FLOWERING4 (ELF4) locus of Arabidopsis (Arabidopsis thaliana) as being important for robust rhythms. Here, it is shown that ELF4 is necessary for at least two core clock functions: entrainment to an environmental cycle and rhythm sustainability under constant conditions. We show that elf4 demonstrates clock input defects in light responsiveness and in circadian gating. Rhythmicity in elf4 could be driven by an environmental cycle, but an increased sensitivity to light means the circadian system of elf4 plants does not entrain normally. Expression of putative core clock genes and outputs were characterized in various ELF4 backgrounds to establish the molecular network of action. ELF4 was found to be intimately associated with the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LONG ELONGATED HYPOCOTYL (LHY)-TIMING OF CAB EXPRESSION1 (TOC1) feedback loop because, under free run, ELF4 is required to regulate the expression of CCA1 and TOC1 and, further, elf4 is locked in the evening phase of this feedback loop. ELF4, therefore, can be considered a component of the central CCA1/LHY-TOC1 feedback loop in the plant circadian clock

    The TIME FOR COFFEE Gene Maintains the Amplitude and Timing of Arabidopsis Circadian Clocks

    Get PDF
    Plants synchronize developmental and metabolic processes with the earth's 24-h rotation through the integration of circadian rhythms and responses to light. We characterize the time for coffee (tic) mutant that disrupts circadian gating, photoperiodism, and multiple circadian rhythms, with differential effects among rhythms. TIC is distinct in physiological functions and genetic map position from other rhythm mutants and their homologous loci. Detailed rhythm analysis shows that the chlorophyll a/b-binding protein gene expression rhythm requires TIC function in the mid to late subjective night, when human activity may require coffee, in contrast to the function of EARLY-FLOWERING3 (ELF3) in the late day to early night. tic mutants misexpress genes that are thought to be critical for circadian timing, consistent with our functional analysis. Thus, we identify TIC as a regulator of the clock gene circuit. In contrast to tic and elf3 single mutants, tic elf3 double mutants are completely arrhythmic. Even the robust circadian clock of plants cannot function with defects at two different phases

    The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana

    No full text
    Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock(1). Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition(2). Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component(3,4). In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction(5)
    corecore