174 research outputs found

    Emerging microRNA Therapeutic Approaches for Cystic Fibrosis

    Get PDF
    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and remains the most common life-shortening diseases affecting the exocrine organs. The absence of this channel results in an imbalance of ion concentrations across the cell membrane and results in more abnormal secretion and mucus plugging in the gastrointestinal tract and in the lungs of CF patients. The direct introduction of fully functional CFTR by gene therapy has long been pursued as a therapeutical option to restore CFTR function independent of the specific CFTR mutation, but the different clinical trials failed to propose persuasive evidence of this strategy. The last ten years has led to the development of new pharmacotherapies which can activate CFTR function in a mutation-specific manner. Although approximately 2,000 different disease-associated mutations have been identified, a single codon deletion, F508del, is by far the most common and is present on at least one allele in approximately 70% of the patients in CF populations. This strategy is limited by chemistry, the knowledge on CFTR and the heterogenicity of the patients. New research efforts in CF aim to develop other therapeutical approaches to combine different strategies. Targeting RNA appears as a new and an important opportunity to modulate dysregulated biological processes. Abnormal miRNA activity has been linked to numerous diseases, and over the last decade, the critical role of miRNA in regulating biological processes has fostered interest in how miRNA binds to and interacts explicitly with the target protein. Herein, this review describes the different strategies to identify dysregulated miRNA opens up a new concept and new opportunities to correct CFTR deficiency. This review describes therapeutic applications of antisense techniques currently under investigation in CF

    Interstitial lung diseases in children

    Get PDF
    Interstitial lung disease (ILD) in infants and children comprises a large spectrum of rare respiratory disorders that are mostly chronic and associated with high morbidity and mortality. These disorders are characterized by inflammatory and fibrotic changes that affect alveolar walls. Typical features of ILD include dyspnea, diffuse infiltrates on chest radiographs, and abnormal pulmonary function tests with restrictive ventilatory defect and/or impaired gas exchange. Many pathological situations can impair gas exchange and, therefore, may contribute to progressive lung damage and ILD. Consequently, diagnosis approach needs to be structured with a clinical evaluation requiring a careful history paying attention to exposures and systemic diseases. Several classifications for ILD have been proposed but none is entirely satisfactory especially in children. The present article reviews current concepts of pathophysiological mechanisms, etiology and diagnostic approaches, as well as therapeutic strategies. The following diagnostic grouping is used to discuss the various causes of pediatric ILD: 1) exposure-related ILD; 2) systemic disease-associated ILD; 3) alveolar structure disorder-associated ILD; and 4) ILD specific to infancy. Therapeutic options include mainly anti-inflammatory, immunosuppressive, and/or anti-fibrotic drugs. The outcome is highly variable with a mortality rate around 15%. An overall favorable response to corticosteroid therapy is observed in around 50% of cases, often associated with sequelae such as limited exercise tolerance or the need for long-term oxygen therapy

    SLC26A9 Gene Is Associated With Lung Function Response to Ivacaftor in Patients With Cystic Fibrosis

    Get PDF
    Ivacaftor is a drug used to treat cystic fibrosis (CF) patients carrying specific gating CFTR mutations. Interpatient variability in the lung response has been shown to be partly explained by rs7512462 in the Solute Carrier Family 26 Member 9 (SLC26A9) gene. In an independent and larger cohort, we aimed to evaluate whether SLC26A9 variants contribute to the variability of the lung phenotype and if they influence the lung response to ivacaftor. We genotyped the French CF Gene Modifier Study cohort (n = 4,840) to investigate whether SLC26A9 variants were involved in the lung phenotype heterogeneity. Their influence in the response to ivacaftor was tested in the 30 treated patients who met the inclusion criteria: older than 6 years of age, percent-predicted forced expiratory volume measured in 1 s (FEV1pp) in the 3 months before treatment initiation ranging between 40 and 90%. Response to treatment was determined by the change in FEV1pp from baseline, averaged in 15–75 days, and the 1st-year post-treatment. We observed that SLC26A9 variants were not associated with lung function variability in untreated patients and that gain of lung function in patients treated with ivacaftor was similar to clinical trials. We confirmed that rs7512462 was associated with variability in ivacaftor-lung response, with a significant reduction in lung function improvement for patients with the C allele. Other SLC26A9 SNPs also contributed to the ivacaftor-response. Interindividual variability in lung response to ivacaftor is associated with SLC26A9 variants in French CF patients. Pharmacogenomics and personalized medicine will soon be part of CF patient care

    Flagellin concentrations in expectorations from cystic fibrosis patients.

    Get PDF
    International audienceBACKGROUND: The aim was to measure flagellin concentrations in the expectorations of CF patients and to examine whether there are correlations with the level of respiratory insufficiency and inflammation. METHODS: Sputum samples from 31 adult patients chronically colonized with P. aeruginosa were collected and analysed for their content of flagellin and IL-8. Clinical data were extracted from patient files. RESULTS: Regardless of whether patients are colonized with mucoid strains or not, they carry clones of P. aeruginosa that express flagellin. While flagellin was present in airways of all of our CF patients, it is difficult to ascertain its contribution to inflammation (IL-8) and lung function deterioration. CONCLUSIONS: This is the first demonstration that flagellin is present in the sputum of patients. Thus, attempts to down regulate inflammation by the use of TLR5 (flagellin receptor) antagonists remain a possibility. However, this result needs to be extended to a larger number of patients to validate it for future research on this subject

    Features of Severe Liver Disease With Portal Hypertension in Patients With Cystic Fibrosis

    Get PDF
    Liver disease is the third leading cause of death in patients with cystic fibrosis (CF), but features of patients with CF, severe liver disease, and portal hypertension have not been fully characterized

    Sources of Variation in Sweat Chloride Measurements in Cystic Fibrosis

    Get PDF
    Rationale: Expanding the use of cystic fibrosis transmembrane conductance regulator (CFTR) potentiators and correctors for the treatment of cystic fibrosis (CF) requires precise and accurate biomarkers. Sweat chloride concentration provides an in vivo assessment of CFTR function, but it is unknown the degree to which CFTR mutations account for sweat chloride variation

    Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis

    Get PDF
    The identification of small molecules that target specific CFTR variants has ushered in a new era of treatment for cystic fibrosis (CF), yet optimal, individualized treatment of CF will require identification and targeting of disease modifiers. Here we use genome-wide association analysis to identify genetic modifiers of CF lung disease, the primary cause of mortality. Meta-analysis of 6,365 CF patients identifies five loci that display significant association with variation in lung disease. Regions on chr3q29 (MUC4/MUC20; P=3.3 × 10−11), chr5p15.3 (SLC9A3; P=6.8 × 10−12), chr6p21.3 (HLA Class II; P=1.2 × 10−8) and chrXq22-q23 (AGTR2/SLC6A14; P=1.8 × 10−9) contain genes of high biological relevance to CF pathophysiology. The fifth locus, on chr11p12-p13 (EHF/APIP; P=1.9 × 10−10), was previously shown to be associated with lung disease. These results provide new insights into potential targets for modulating lung disease severity in CF

    Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis

    Get PDF
    Variants associated with meconium ileus in cystic fibrosis (CF) were identified in 3,763 patients by GWAS. Five SNPs at two loci near SLC6A14 (min P=1.28×10−12 at rs3788766), chr Xq23-24 and SLC26A9 (min P=9.88×10−9 at rs4077468), chr 1q32.1 accounted for ~5% of the phenotypic variability, and were replicated in an independent patient collection (n=2,372; P=0.001 and 0.0001 respectively). By incorporating that disease-causing mutations in CFTR alter electrolyte and fluid flux across epithelia into an hypothesis-driven genome-wide analysis (GWAS-HD), we identified the same SLC6A14 and SLC26A9 associated SNPs, while establishing evidence for the involvement of SNPs in a third solute carrier gene, SLC9A3. In addition, GWAS-HD provided evidence of association between meconium ileus and multiple constituents of the apical plasma membrane where CFTR resides (P=0.0002, testing 155 apical genes jointly and replicated, P=0.022). These findings suggest that modulating activities of apical membrane constituents could complement current therapeutic paradigms for cystic fibrosis
    corecore