227 research outputs found
Addition of multiple limiting resources reduces grassland diversity
Niche dimensionality provides a general theoretical explanation for biodiversity—more niches, defined by more limiting factors, allow for more ways that species can coexist1. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist2. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light3. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network4. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity5 and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors
Biochar and Managed Perennial Ecosystems
Biochar is a carbon-rich material that is similar to charcoal. It is produced when biomass is burned in the absence of oxygen, a process otherwise known as pyrolysis. Pyrolysis and the production of biochar are currently being promoted as a means to both produce domestic fuel (bio-oil) while concurrently producing a co-product that increases crop yield and sequesters carbon in the soil (biochar). While there may be many potential benefits in the application of biochar to agricultural soils, such as enhanced soil fertility and improved soil water status, there are no studies of higher-order ecological and ecosystem effects of biochar and its potential synergistic interactions (either positive or negative) on complex perennial systems. The goal of this field experiment is to determine how biochar and manure addition directly affect ecosystem structure and function in perennial systems, specifically soil nutrients, water, plants, and soil organisms
Determining threshold responses of plant-soil feedbacks to nitrogen deposition
Change associated with nitrogen deposition in the soil will alter ecosystem function and diversity. This study looks at precisely how plants and soil will interact to respond to the addition of N at various levels and in different forms
Scale Both Confounds and Informs Characterization of Species Coexistence in Empirical Systems
Identifying stable coexistence in empirical systems is notoriously difficult. Here, we show how spatiotemporal structure and complex system dynamics can confound two commonly used stability metrics in empirical contexts: response to perturbation and invasion rate when rare. We use these metrics to characterize stable coexistence across a range of spatial and temporal scales for five simulated models in which the ability of species to coexist in the long term is known a priori and for an empirical old field successional time series. We term the resulting multivariate distribution of metrics a “stability fingerprint.” In accordance with a wide range of classic and recent studies, our results demonstrate that no combination of empirically tractable metrics or measurements is guaranteed to “correctly” characterize coexistence. However, we also find that heuristic information from the stability fingerprint can be used to broadly characterize dynamic behavior and identify circumstances under which particular combinations of species are likely to persist. Moreover, stability fingerprints appear to be particularly well suited for matching potential theoretical models to observed dynamics. These findings suggest that it may be prudent to shift the focus of empirical stability analysis away from quantifying single measures of stability and toward more heuristic, multivariate characterizations of community dynamics
Biochar and Managed Perennial Ecosystems: Testing for Synergy in Ecosystem Function and Biodiversity
Biochar is a carbon-rich material that is similar to charcoal. It is produced when biomass is burned in the absence of oxygen, a process otherwise known as pyrolysis. Pyrolysis and the production of biochar are currently being promoted as a means to both produce domestic fuel (biooil) and concurrently producing a co-product that increases crop yield and sequesters carbon in the soil (biochar). While there may be many potential benefits in the application of biochar to agricultural soils, such as enhanced soil fertility and improved soil water status, there are no studies of higher-order ecological and ecosystem effects of biochar and its potential synergistic interactions (either positive or negative) on complex perennial systems. The goal of this field experiment is to determine how biochar and manure addition directly affect ecosystem structure and function in perennial systems, specifically soil nutrients, water, plants, and soil organisms
The recovery of plant community composition following passive restoration across spatial scales
Human impacts have led to dramatic biodiversity change which can be highly scale-dependent across space and time. A primary means to manage these changes is via passive (here, the removal of disturbance) or active (management interventions) ecological restoration. The recovery of biodiversity, following the removal of disturbance, is often incomplete relative to some kind of reference target. The magnitude of recovery of ecological systems following disturbance depends on the landscape matrix and many contingent factors. Inferences about recovery after disturbance and biodiversity change depend on the temporal and spatial scales at which biodiversity is measured. We measured the recovery of biodiversity and species composition over 33 years in 17 temperate grasslands abandoned after agriculture at different points in time, collectively forming a chronosequence since abandonment from 1 to 80 years. We compare these abandoned sites with known agricultural land-use histories to never-disturbed sites as relative benchmarks. We specifically measured aspects of diversity at the local plot-scale (α-scale, 0.5 m2) and site-scale (γ-scale, 10 m2), as well as the within-site heterogeneity (β-diversity) and among-site variation in species composition (turnover and nestedness). At our α-scale, sites recovering after agricultural abandonment only had 70% of the plant species richness (and ~30% of the evenness), compared to never-ploughed sites. Within-site β-diversity recovered following agricultural abandonment to around 90% after 80 years. This effect, however, was not enough to lead to recovery at our γ-scale. Richness in recovering sites was ~65% of that in remnant never-ploughed sites. The presence of species characteristic of the never-disturbed sites increased in the recovering sites through time. Forb and legume cover declines in years since abandonment, relative to graminoid cover across sites. Synthesis. We found that, during the 80 years after agricultural abandonment, old fields did not recover to the level of biodiversity in remnant never-ploughed sites at any scale. β-diversity recovered more than α-scale or γ-scale. Plant species composition recovered, but not completely, over time, and some species groups increased their cover more than others. Patterns of ecological recovery in degraded ecosystems across space and long time-scales can inform targeted active restoration interventions and perhaps, lead to better outcomes
- …