280 research outputs found

    Institutional barriers to successful innovations: perceptions of rural farmers and key stakeholders in southwest Nigeria

    Get PDF
    Diffusion studies in sub-Saharan Africa have typically focused on the impact of traditional adoption factors on uptake of technological innovations. This study draws on semi-structured interviews of rural farmers and in-depth interviews of stakeholders in southwest Nigeria to examine the impact of institutional factors on the success of technological innovations. The findings indicate that government policies, markets, financial institutions, infrastructure and other institutional conditions play significant role on the success of technological innovations. A successful innovation package should integrate institutional reforms with promotion of innovative inputs, and vibrant farmers’ cooperatives can be at the heart of such agrarian reform

    Institutional barriers to successful innovations: Perceptions of rural farmers and key stakeholders in southwest Nigeria

    Get PDF
    Diffusion studies in sub-Saharan Africa have typically focused on the impact of traditional adoption factors on uptake of technological innovations. This study draws on semi-structured interviews of rural farmers and in-depth interviews of stakeholders in southwest Nigeria to examine the impact of institutional factors on the success of technological innovations. The findings indicate that government policies, markets, financial institutions, infrastructure and other institutional conditions play significant role on the success of technological innovations. A successful innovation package should integrate institutional reforms with promotion of innovative inputs, and vibrant farmers’ cooperatives can be at the heart of such agrarian reform. This is the accepted manuscript of an article whose final and definitive form has been published in African Journal of Science, Technology, Innovation and Development 2014, 6(4) © 2014. Institutional barriers to successful innovations: Perceptions of rural farmers and key stakeholders in southwest Nigeria is available online at: http://www.tandfonline.com/10.1080/20421338.2014.96603

    From integration to fusion: the challenges ahead

    Get PDF
    The increasing complexity of numerical modelling systems in environmental sciences has led to the development of different supporting architectures. Integrated environmental modelling can be undertaken by building a ‘super model’ simulating many processes or by using a generic coupling framework to dynamically link distinct separate models during run-time. The application of systemic knowledge management to integrated environmental modelling indicates that we are at the onset of the norming stage, where gains will be made from consolidation in the range of standards and approaches that have proliferated in recent years. Consolidation is proposed in six topics: metadata for data and models; supporting information; Software-as-a-service; linking (or interface) technologies; diagnostic or reasoning tools; and the portrayal and understanding of integrated modelling. Consolidation in these topics will develop model fusion: the ability to link models, with easy access to information about the models, interface standards such as OpenMI and software tools to make integration easier. For this to happen, an open software architecture will be crucial, the use of open source software is likely to increase and a community must develop that values openness and the sharing of models and data as much as its publications and citation records

    Open data from physical model tests: Lessons learned from related initiatives

    Get PDF
    The HYDRALAB network of European physical model laboratories (www.hydralab.eu) has a range of facilities that includes flumes, basins, ice facilities, rotating tanks and environmental facilities. Each institution had its own data collection system, there are many proprietorial data formats, a shortage of meta-data and no central effort to curate or preserve this data in a findable, accessible, interoperable and reusable (FAIR) way. HYDRALAB+ (2015-2019) is a European Commission Horizon 2020 project to support this network, which requires FAIR data management. HYDRALAB is reviewing the steps taken to make data openly accessible in related disciplines, so that lessons learned can be applied to HDRALAB+. The chosen communities were: (i) the University of Hull’s digital repository, (ii) EMODnet Baltic Checkpoint, (iii) OpenEarth and (iv) the FP7 projects PEGASO and MEDINA and the EU MED project COASTGAP. It is clear that no one solution can deal with all situations: different data types and requirements can best be dealt with by different approaches. Standards for meta-data should be applied, but no existing standard covers the range of situations faced by HYDRALAB. All can be extended in a bespoke manner (which can potentially be included in an update of the standard) but it is highly likely that more than one standard (and none) will be used in such a diverse community. This is perfectly acceptable, so long as the standard is published. There is also a clear need for guidance on the development of repositories where large volumes of data are collected and an understanding of how much needs to be made available on-line. Although there can be conflicts of interest between institutions that are developing policies for data management and projects that want a uniform approach to data management across all partners, systems today can generally accommodate this

    Selection and integration of earth observation-based data for an operational disease forecasting system

    Get PDF
    The current increase in the volume and quality of Earth Observation (EO) data being collected by satellites offers the potential to contribute to applications across a wide range of scientific domains. It is well established that there are correlations between characteristics that can be derived from EO satellite data, such as land surface temperature or land cover, and the incidence of some diseases. Thanks to the reliable frequent acquisition and rapid distribution of EO data it is now possible for this field to progress from using EO in retrospective analyses of historical disease case counts to using it in operational forecasting systems. However, bringing together EO-based and non-EO-based datasets, as is required for disease forecasting and many other fields, requires carefully designed data selection, formatting and integration processes. Similarly, it requires careful communication between collaborators to ensure that the priorities of that design process match the requirements of the application. Here we will present work from the D-MOSS (Dengue forecasting MOdel Satellite-based System) project. D-MOSS is a dengue fever early warning system for South and South East Asia that will allow public health authorities to identify areas at high risk of disease epidemics before an outbreak occurs in order to target resources to reduce spreading of epidemics and improve disease control. The D-MOSS system uses EO, meteorological and seasonal weather forecast data, combined with disease statistics and static layers such as land cover, as the inputs into a dengue fever model and a water availability model. Water availability directly impacts dengue epidemics due to the provision of mosquito breeding sites. The datasets are regularly updated with the latest data and run through the models to produce a new monthly forecast. For this we have designed a system to reliably feed standardised data to the models. The project has involved a close collaboration between remote sensing scientists, geospatial scientists, hydrologists and disease modelling experts. We will discuss our approach to the selection of data sources, data source quality assessment, and design of a processing and ingestion system to produce analysis-ready data for input to the disease and water availability models

    Exploring health systems research and its influence on policy processes in low income countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interface between research and policymaking in low-income countries is highly complex. The ability of health systems research to influence policy processes in such settings face numerous challenges. Successful analysis of the research-policy interface in these settings requires understanding of contextual factors as well as key influences on the interface. <it>Future Health Systems (FHS): Innovations for Equity </it>is a consortium conducting research in six countries in Asia and Africa. One of the three cross-country research themes of the consortium is analysis of the relationship between research (evidence) and policy making, especially their impact on the poor; insights gained in the initial conceptual phase of FHS activities can inform the global knowledge pool on this subject.</p> <p>Discussion</p> <p>This paper provides a review of the research-policy interface in low-income countries and proposes a conceptual framework, followed by directions for empirical approaches. First, four developmental perspectives are considered: social institutional factors; virtual versus grassroots realities; science-society relationships; and construction of social arrangements. Building on these developmental perspectives three research-policy interface entry points are identified: 1. Recognizing policy as complex processes; 2. Engaging key stakeholders: decision-makers, providers, scientists, and communities; and 3. Enhancing accountability. A conceptual framework with three entry points to the research-policy interface – policy processes; stakeholder interests, values, and power; and accountability – within a context provided by four developmental perspectives is proposed. Potential empirical approaches to the research-policy interface are then reviewed. Finally, the value of such innovative empirical analysis is considered.</p> <p>Conclusion</p> <p>The purpose of this paper is to provide the background, conceptual framework, and key research directions for empirical activities focused on the research-policy interface in low income settings. The interface can be strengthened through such analysis leading to potential improvements in population health in low-income settings. Health system development cognizant of the myriad factors at the research-policy interface can form the basis for innovative future health systems.</p

    Prevalence and Factors Associated with Intestinal Parasitic Infection among Children in an Urban Slum of Karachi

    Get PDF
    Background:Intestinal parasitic infections are endemic worldwide and have been described as constituting the greatest single worldwide cause of illness and disease. Poverty, illiteracy, poor hygiene, lack of access to potable water and hot and humid tropical climate are the factors associated with intestinal parasitic infections. The study aimed to estimate prevalence and identify factors associated with intestinal parasitic infections among 1 to 5 years old children residing in an urban slum of Karachi Pakistan. Methods And PrincipalFindings:A cross sectional survey was conducted from February to June 2006 in Ghosia Colony Gulshan Town Karachi, Pakistan. A simple random sample of 350 children aged 1-5 years was collected. The study used structured pre-tested questionnaire, anthropometric tools and stool tests to obtain epidemiological and disease data. Data were analyzed using appropriate descriptive, univariate and multivariable logistic regression methods. The mean age of participants was 2.8 years and 53% were male. The proportions of wasted, stunted and underweight children were 10.4%, 58.9% and 32.7% respectively. The prevalence of Intestinal parasitic infections was estimated to be 52.8% (95% CI: 46.1, 59.4). Giardia lamblia was the most common parasite followed by Ascaris lumbricoides, Blastocystis hominis and Hymenolepis nana. About 43% children were infected with single parasite and 10% with multiple parasites. Age {Adjusted Odds Ratio (aOR) = 1.5, 95% CI: 1.1, 1.9}, living in rented households (aOR = 2.0, 95% CI: 1.0, 3.9) and history of excessive crying (aOR = 1.9, 95% CI: 1.0, 3.4) were significantly associated with intestinal parasitic infections.Conclusion:Intestinal parasites are highly prevalent in this setting and poverty was implicated as an important risk factor for infection. Effective poverty reduction programmes and promotion of deworming could reduce intestinal parasite carriage. There is a need for mass scale campaigns to create awareness about health and hygiene
    • …
    corecore