2,302 research outputs found
Efficacy of a Workbook to Promote Forgiveness: A Randomized Controlled Trial with University Students
Objective
The present study investigated the efficacy of a 6-hour self-directed workbook adapted from the REACH Forgiveness intervention. Method
Undergraduates (N = 41) were randomly assigned to either an immediate treatment or waitlist control condition. Participants were assessed across 3 time periods using a variety of forgiveness outcome measures. Results
The 6-hour workbook intervention increased forgiveness, as indicated by positive changes in participants’ forgiveness ratings that differed by condition. In addition, benchmarking analysis showed that the self-directed workbook intervention is at least as efficacious as the delivery of the REACH Forgiveness model via group therapy. Conclusion
A self-directed workbook intervention adapted from the REACH Forgiveness intervention provides an adjunct to traditional psychotherapy that could assist the mental health community to manage the burden of unforgiveness among victims of interpersonal harm
Volcanic electrification: recent advances and future perspectives
The electrification of volcanic plumes has been described intermittently since at least the time of Pliny the Younger and the 79 AD eruption of Vesuvius. Although sometimes disregarded in the past as secondary effects, recent work suggests that the electrical properties of volcanic plumes reveal intrinsic and otherwise inaccessible parameters of explosive eruptions. An increasing number of volcanic lightning studies across the last decade have shown that electrification is ubiquitous in volcanic plumes. Technological advances in engineering and numerical modelling, paired with close observation of recent eruptions and dedicated laboratory studies (shock-tube and current impulse experiments), show that charge generation and electrical activity are related to the physical, chemical, and dynamic processes underpinning the eruption itself. Refining our understanding of volcanic plume electrification will continue advancing the fundamental understanding of eruptive processes to improve volcano monitoring. Realizing this goal, however, requires an interdisciplinary approach at the intersection of volcanology, atmospheric science, atmospheric electricity, and engineering. Our paper summarizes the rapid and steady progress achieved in recent volcanic lightning research and provides a vision for future developments in this growing field
An Unmatched Radio Frequency Chain for Low-Field Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) is a safe and versatile diagnostic tool for intracranial imaging, however it is also one of the most expensive and specialized making it scarce in low- to middle-income countries (LMIC). The affordability and portability of low-field MRI offers the potential for increased access to brain imaging for diseases like Hydrocephalus in LMIC. In this tutorial style work, we show the design of a low powered and low cost radio frequency chain of electronics to be paired with a previously reported prepolarized low-field MRI for childhood hydrocephalus imaging in sub-Saharan Africa where the incidence of this condition is high. Since the Larmor frequency for this system is as low as 180 kHz, we are able to minimize the impedance of the transmit coil to 5 ohms rather than match to 50 ohms as is traditionally the case. This reduces transmit power consumption by a factor of 10. We also show the use of inexpensive and commonly available animal enclosure fencing (“chicken wire”) as a shield material at this frequency and compare to more traditional shield designs. These preliminary results show that highly portable and affordable low-field MRI systems could provide image resolution and signal-to-noise sufficient for planning hydrocephalus treatment in areas of the world with substantial resource limitations. Employment of these technologies in sub-Saharan Africa offers a cost-effective, sustainable approach to neurological diagnosis and treatment planning in this disease burdened region.Fil: Harper, Joshua R.. Pennsylvania State University; Estados UnidosFil: Zárate Evers, Cristhian Manuel. Universidad Nacional de Asunción; Paraguay. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Krauch, Federico. Universidad Nacional de Asunción; ParaguayFil: Muhumuza, Ivan. Mbarara University Of Science And Technology; UgandaFil: Molina, Jorge. Universidad Nacional de Asunción; ParaguayFil: Obungoloch, Johnes. Mbarara University Of Science And Technology; UgandaFil: Schiff, Steven J.. Pennsylvania State University; Estados Unido
COMAP Early Science: III. CO Data Processing
We describe the first season COMAP analysis pipeline that converts raw
detector readouts to calibrated sky maps. This pipeline implements four main
steps: gain calibration, filtering, data selection, and map-making. Absolute
gain calibration relies on a combination of instrumental and astrophysical
sources, while relative gain calibration exploits real-time total-power
variations. High efficiency filtering is achieved through spectroscopic
common-mode rejection within and across receivers, resulting in nearly
uncorrelated white noise within single-frequency channels. Consequently,
near-optimal but biased maps are produced by binning the filtered time stream
into pixelized maps; the corresponding signal bias transfer function is
estimated through simulations. Data selection is performed automatically
through a series of goodness-of-fit statistics, including and
multi-scale correlation tests. Applying this pipeline to the first-season COMAP
data, we produce a dataset with very low levels of correlated noise. We find
that one of our two scanning strategies (the Lissajous type) is sensitive to
residual instrumental systematics. As a result, we no longer use this type of
scan and exclude data taken this way from our Season 1 power spectrum
estimates. We perform a careful analysis of our data processing and observing
efficiencies and take account of planned improvements to estimate our future
performance. Power spectrum results derived from the first-season COMAP maps
are presented and discussed in companion papers.Comment: Paper 3 of 7 in series. 26 pages, 23 figures, submitted to Ap
COMAP Early Science: VI. A First Look at the COMAP Galactic Plane Survey
We present early results from the COMAP Galactic Plane Survey conducted
between June 2019 and April 2021, spanning in Galactic
longitude and |b|<1.\!\!^{\circ}5 in Galactic latitude with an angular
resolution of . The full survey will span -
and will be the first large-scale radio continuum survey at
GHz with sub-degree resolution. We present initial results from the first part
of the survey, including diffuse emission and spectral energy distributions
(SEDs) of HII regions and supernova remnants. Using low and high frequency
surveys to constrain free-free and thermal dust emission contributions, we find
evidence of excess flux density at GHz in six regions that we interpret
as anomalous microwave emission. Furthermore we model UCHII contributions using
data from the GHz CORNISH catalogue and reject this as the cause of the
GHz excess. Six known supernova remnants (SNR) are detected at GHz,
and we measure spectral indices consistent with the literature or show evidence
of steepening. The flux density of the SNR W44 at GHz is consistent with
a power-law extrapolation from lower frequencies with no indication of spectral
steepening in contrast with recent results from the Sardinia Radio Telescope.
We also extract five hydrogen radio recombination lines to map the warm ionized
gas, which can be used to estimate electron temperatures or to constrain
continuum free-free emission. The full COMAP Galactic plane survey, to be
released in 2023/2024, will be an invaluable resource for Galactic
astrophysics.Comment: Paper 6 of 7 in series. 28 pages, 10 figures, submitted to Ap
COMAP Early Science: IV. Power Spectrum Methodology and Results
We present the power spectrum methodology used for the first-season COMAP
analysis, and assess the quality of the current data set. The main results are
derived through the Feed-feed Pseudo-Cross-Spectrum (FPXS) method, which is a
robust estimator with respect to both noise modeling errors and experimental
systematics. We use effective transfer functions to take into account the
effects of instrumental beam smoothing and various filter operations applied
during the low-level data processing. The power spectra estimated in this way
have allowed us to identify a systematic error associated with one of our two
scanning strategies, believed to be due to residual ground or atmospheric
contamination. We omit these data from our analysis and no longer use this
scanning technique for observations. We present the power spectra from our
first season of observing and demonstrate that the uncertainties are
integrating as expected for uncorrelated noise, with any residual systematics
suppressed to a level below the noise. Using the FPXS method, and combining
data on scales we estimate , the first direct 3D
constraint on the clustering component of the CO(1-0) power spectrum in the
literature.Comment: Paper 4 of 7 in series. 18 pages, 11 figures, as accepted in Ap
COMAP Early Science: V. Constraints and Forecasts at
We present the current state of models for the carbon monoxide (CO)
line-intensity signal targeted by the CO Mapping Array Project (COMAP)
Pathfinder in the context of its early science results. Our fiducial model,
relating dark matter halo properties to CO luminosities, informs parameter
priors with empirical models of the galaxy-halo connection and previous CO(1-0)
observations. The Pathfinder early science data spanning wavenumbers
-Mpc represent the first direct 3D constraint on the
clustering component of the CO(1-0) power spectrum. Our 95% upper limit on the
redshift-space clustering amplitude K greatly
improves on the indirect upper limit of K reported from the CO
Power Spectrum Survey (COPSS) measurement at Mpc. The COMAP
limit excludes a subset of models from previous literature, and constrains
interpretation of the COPSS results, demonstrating the complementary nature of
COMAP and interferometric CO surveys. Using line bias expectations from our
priors, we also constrain the squared mean line intensity-bias product,
K, and the cosmic molecular gas
density, Mpc (95% upper
limits). Based on early instrument performance and our current CO signal
estimates, we forecast that the five-year Pathfinder campaign will detect the
CO power spectrum with overall signal-to-noise of 9-17. Between then and now,
we also expect to detect the CO-galaxy cross-spectrum using overlapping galaxy
survey data, enabling enhanced inferences of cosmic star-formation and
galaxy-evolution history.Comment: Paper 5 of 7 in series. 17 pages + appendix and bibliography (30
pages total); 15 figures, 6 tables; accepted for publication in ApJ; v3
reflects the accepted version with minor changes and additions to tex
COMAP Early Science: II. Pathfinder Instrument
Line intensity mapping (LIM) is a new technique for tracing the global
properties of galaxies over cosmic time. Detection of the very faint signals
from redshifted carbon monoxide (CO), a tracer of star formation, pushes the
limits of what is feasible with a total-power instrument. The CO Mapping
Project (COMAP) Pathfinder is a first-generation instrument aiming to prove the
concept and develop the technology for future experiments, as well as
delivering early science products. With 19 receiver channels in a hexagonal
focal plane arrangement on a 10.4 m antenna, and an instantaneous 26-34 GHz
frequency range with 2 MHz resolution, it is ideally suited to measuring
CO(=1-0) from . In this paper we discuss strategies for designing
and building the Pathfinder and the challenges that were encountered. The
design of the instrument prioritized LIM requirements over those of ancillary
science. After a couple of years of operation, the instrument is well
understood, and the first year of data is already yielding useful science
results. Experience with this Pathfinder will drive the design of the next
generations of experiments.Comment: Paper 2 of 7 in series. 27 pages, 28 figures, submitted to Ap
Kinetics and Ligand-Binding Preferences of Mycobacterium tuberculosis Thymidylate Synthases, ThyA and ThyX
Mycobacterium tuberculosis kills approximately 2 million people each year and presents an urgent need to identify new targets and new antitubercular drugs. Thymidylate synthase (TS) enzymes from other species offer good targets for drug development and the M. tuberculosis genome contains two putative TS enzymes, a conventional ThyA and a flavin-based ThyX. In M. tuberculosis, both TS enzymes have been implicated as essential for growth, either based on drug-resistance studies or genome-wide mutagenesis screens. To facilitate future small molecule inhibitors against these proteins, a detailed enzymatic characterization was necessary.After cloning, overexpression, and purification, the thymidylate-synthesizing ability of ThyA and ThyX gene products were directly confirmed by HPLC analysis of reaction products and substrate saturation kinetics were established. 5-Fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP) was a potent inhibitor of both ThyA and ThyX, offering important clues to double-targeting strategies. In contrast, the folate-based 1843U89 was a potent inhibitor of ThyA but not ThyX suggesting that it should be possible to find ThyX-specific antifolates. A turnover-dependent kinetic assay, combined with the active-site titration approach of Ackermann and Potter, revealed that both M. tuberculosis enzymes had very low k(cat) values. One possible explanation for the low catalytic activity of M. tuberculosis ThyX is that its true biological substrates remain to be identified. Alternatively, this slow-growing pathogen, with low demands for TMP, may have evolved to down-regulate TS activities by altering the turnover rate of individual enzyme molecules, perhaps to preserve total protein quantities for other purposes. In many organisms, TS is often used as a part of larger complexes of macromolecules that control replication and DNA repair.Thus, the present enzymatic characterization of ThyA and ThyX from M. tuberculosis provides a framework for future development of cell-active inhibitors and the biological roles of these TS enzymes in M. tuberculosis
- …