36 research outputs found

    Predicting experimentally stable allotropes: Instability of penta-graphene

    Get PDF
    International audienceIn recent years, a plethora of theoretical carbon allotropes have been proposed, none of which has been experimentally isolated. We discuss here criteria that should be met for a new phase to be potentially experimentally viable. We take as examples Haeckelites, 2D networks of sp2-carbon–containing pentagons and heptagons, and “penta-graphene,” consisting of a layer of pentagons constructed from a mixture of sp2- and sp3-coordinated carbon atoms. In 2D projection appearing as the “Cairo pattern,” penta-graphene is elegant and aesthetically pleasing. However, we dispute the author’s claims of its potential stability and experimental relevanc

    Polyurea-Functionalized Multiwalled Carbon Nanotubes

    Get PDF
    An in situ polycondensation approach was applied to functionalize multiwalled carbon nanotubes (MWNTs), resulting in various linear or hyperbranched polycondensed polymers [e.g., polyureas, polyurethanes, and poly(urea-urethane)-bonded carbon nanotubes]. The quantity of the grafted polymer can be easily controlled by the feed ratio of monomers. As a typical example, the polyurea-functionalized MWNTs were measured and characterized in detail. The oxidized MWNTs (MWNT-COOH) were converted into acyl chloride-functionalized MWNTs (MWNT-COCl) by reaction with neat thionyl chloride (SOCl2). MWNT-COCl was reacted with excess 1,6-diaminohexane, affording amino-functionalized MWNTs (MWNT-NH2). In the presence of MWNT-NH2, the polyurea was covalently coated onto the surfaces of the nanotube by in situ polycondensation of diisocyanate [e.g., 4,4‘-methylenebis(phenylisocyanate)] and 1,6-diaminohexane, followed by the removal of free polymer via repeated filtering and solvent washing. The coated polyurea content can be controlled to some extent by adjusting the feed ratio of the isocyanato and amino groups. The structure and morphology of the resulting nanocomposites were characterized by FTIR, NMR, Raman, confocal Raman, TEM, EDS, and SEM measurements. The polyurea-coated MWNTs showed interesting self-assembled flat- or flowerlike morphologies in the solid state. The signals corresponding to that of the D and G bands of the carbon nanotubes were strongly attenuated after polyurea was chemically tethered to the MWNT surfaces. Comparative experiments showed that the grafted polymer species and structures have a strong effect on the Raman signals of polymer-functionalized MWNTs

    Pseudocarbynes: Charge-Stabilized Carbon Chains

    No full text
    Carbyne is the long-sought linear allotrope of carbon. Despite many reports of solid carbyne, the evidence is unconvincing. A recent report of supposed carbyne shows gold clusters in transmission electron microscopy (TEM) images. In order to determine the effects of such clusters, we performed ab initio calculations of uncapped and capped linear carbon chains and their complexes with gold clusters. The results indicate that gold dramatically alters the electron densities of the CC bonds. The resulting charge-stabilization of the carbon chains leads to pseudocarbynes. These findings are corroborated in calculations of the structures of crystals containing isolated carbon chains and those intercalated with gold clusters. Calculated Raman spectra of these pseudocarbynes with gold clusters are in better agreement with experiment than calculated spectra of isolated carbon chains. The current work opens the way toward the design and development of a new class of metal-intercalated carbon compounds

    Stable [60]fullerene carbocations

    No full text
    [60]Fullerene derivatives, C60Ar5Cl (Ar = Ph or 4-FC6H4), react with AlCl3 in solution at room temperature to form Cs symmetrical pentaaryl[60]fullerene carbocations, C60(Ar)5+
    corecore