19 research outputs found

    Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Rα, IL-13Rα1, and γc regulates relative cytokine sensitivity

    Get PDF
    Interleukin (IL)-4 and -13 are related cytokines sharing functional receptors. IL-4 signals through the type I (IL-4Rα/common γ-chain [γc]) and the type II (IL-4Rα/-13Rα1) IL-4 receptors, whereas IL-13 utilizes only the type II receptor. In this study, we show that mouse bone marrow–derived macrophages and human and mouse monocytes showed a much greater sensitivity to IL-4 than to IL-13. Lack of functional γc made these cells poorly responsive to IL-4, while retaining full responsiveness to IL-13. In mouse peritoneal macrophages, IL-4 potency exceeds that of IL-13, but lack of γc had only a modest effect on IL-4 signaling. In contrast, IL-13 stimulated greater responses than IL-4 in fibroblasts. Using levels of receptor chain expression and known binding affinities, we modeled the assemblage of functional type I and II receptor complexes. The differential expression of IL-4Rα, IL-13Rα1, and γc accounted for the distinct IL-4–IL-13 sensitivities of the various cell types. These findings provide an explanation for IL-13's principal function as an “effector” cytokine and IL-4's principal role as an “immunoregulatory” cytokine

    Alpha and lambda interferon together mediate suppression of CD4 T cells induced by respiratory syncytial virus

    Get PDF
    The mechanism by which respiratory syncytial virus (RSV) suppresses T-cell proliferation to itself and other antigens is poorly understood. We used monocyte-derived dendritic cells (MDDC) and CD4 T cells and measured [(3)H]thymidine incorporation to determine the factors responsible for RSV-induced T-cell suppression. These two cell types were sufficient for RSV-induced suppression of T-cell proliferation in response to cytomegalovirus or Staphylococcus enterotoxin B. Suppressive activity was transferable with supernatants from RSV-infected MDDC and was not due to transfer of live virus or RSV F (fusion) protein. Supernatants from RSV-infected MDDC, but not MDDC exposed to UV-killed RSV or mock conditions, contained alpha interferon (IFN-alpha; median, 43 pg/ml) and IFN-lambda (approximately 1 to 20 ng/ml). Neutralization of IFN-alpha with monoclonal antibody (MAb) against one of its receptor chains, IFNAR2, or of IFN-lambda with MAb against either of its receptor chains, IFN-lambdaR1 (interleukin 28R [IL-28R]) or IL-10R2, had a modest effect. In contrast, blocking the two receptors together markedly reduced or completely blocked the RSV-induced suppression of CD4 T-cell proliferation. Defining the mechanism of RSV-induced suppression may guide vaccine design and provide insight into previously uncharacterized human T-cell responses and activities of interferons
    corecore