44 research outputs found

    Catalysis with inorganic membranes

    Get PDF
    Catalytic inorganic membranes are among the most challenging and intriguing porous materials. Consisting of a thin film of mesoporous or microporous inorganic material deposited on a macroporous material, catalytic membranes are multifunctional materials that must be engineered for both chemical and physical properties. New approaches to carrying out chemical reactions are possible by tailoring the membrane catalytic activity and selectivity, permselectivity, and other thin film properties. Readers are referred to several recent reviews of inorganic membranes, in particular, Zaspalis and Burggraaf, Armor, Gellings and Bouwmeister, Hsieh, Stoukides, and Tsotsis et al. Inorganic membranes are most conveniently classified according to pore size (see introductory article). Of particular importance is the ratio of the pore size to the molecular mean free path (MFP). Decreasing pore dimensions lead to increased selectivity with corresponding loss of permeability. Macroporous membranes have a pore size much larger than the MFP, leading to molecular (bulk) diffusion or viscous flow. Knudsen diffusion dominates in the mesoporous regime, where the pore size is comparable to the MFP. In addition, surface diffusion of the molecules along the pore walls may contribute, leading to an enhanced flux of the adsorbed species along the walls. The microporous regime is encountered when the pore size is comparable to the molecules. This regime makes possible much higher permselectivities, which depend on both molecular size and specific interactions with the solid. Finally, in dense membranes, molecular transport occurs through a solution-diffusion mechanism, which also involves specific interactions between the solute and membrane

    The role of topography in landform development at an active temperate glacier in Arctic Norway

    Get PDF
    Topography exerts a strong control on how glaciers respond to changes in climate. Increased understanding of this role is important for both refining model predictions of future rates of glacier recession and for reconstructing climatic change from the glacial geological record. In this paper, we examine the geomorphological and sedimentological evidence in the foreland of Fingerbreen, a temperate outlet of the plateau icefield Østre Svartisen. The aim is to investigate the relationship between processes of landform generation and the changing influence of topography as recession progressed. The Fingerbreen foreland is dominated by bouldery Little Ice Age moraines and extensive areas of striated bedrock. A heavily fluted zone occurs in the central part of the foreland that is cross-cut by annual transverse and sawtooth moraines. Systematic investigations of the structural architecture of moraines at various locations in the foreland provide evidence for a range of moraine-forming processes, which can be linked to the topographic setting (e.g. deposition on a reverse bedrock slope) and drainage conditions. This includes push and bulldozing of proglacial sediments and squeezing of sub-glacial sediments and submarginal freeze-on of sediment slabs. We also identify variations in moraine spacing as a result of topography. This research demonstrates the importance of topography when interpreting moraine records in the context of climate and glacier dynamics

    Meta-analysis of 49 549 individuals imputed with the 1000 Genomes Project reveals an exonic damaging variant in ANGPTL4 determining fasting TG levels

    Get PDF
    Background So far, more than 170 loci have been associated with circulating lipid levels through genomewide association studies (GWAS). These associations are largely driven by common variants, their function is often not known, and many are likely to be markers for the causal variants. In this study we aimed to identify more new rare and low-frequency functional variants associated with circulating lipid levels. Methods We used the 1000 Genomes Project as a reference panel for the imputations of GWAS data from ~60 000 individuals in the discovery stage and ~90 000 samples in the replication stage. Results Our study resu

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Confronting deafness in an unstilled world

    No full text

    Salicylic acid regulates basal resistance to fusarium head blight in wheat

    Get PDF
    Citation: Makandar, R., . . . & Shah, J. (2012). Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 25(3), 431-439. https://doi.org/10.1094/MPMI-09-11-0232Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection

    Intermediate product yield enhancement with a catalytic inorganic membrane: I. Analytical model for the case of isothermal and differential operation

    Get PDF
    A simple model is developed to examine the performance of a supported catalytic membrane within which occurs the consecutive-parallel reaction system given by A + B → R, with rate = k1pαA1ApαBB, and A + R → P, with rate = k2pαA2ApαRR. Closed-form solutions reveal that segregation of reactants A and B to opposite sides of the membrane is an effective strategy for increasing the desired product (R) point yield. However, increases in the component R yield come at the expense of the point catalyst utilization, due, in part, to depletion of reacting components B and R. The membrane performance is sensitive to the relative reaction orders with respect to component A for the special case in which the rates are zeroth-order with respect to B and R (αB = αR = 0). The segregation strategy is shown to be most beneficial if three requirements are met: (i) αA1 < αA2, (ii) k1, k2 sufficiently large and (iii) active layer sufficiently thin compared to support. Under favorable conditions [requirements (i)-(iii) met], component R is selectively produced near the active layer surface, and diffuses out of the membrane before further reaction to undesired product (P). The simulations indicate that the fractional increases in the R yield attained, as the degree of segregation is increased, exceed the fractional decreases in catalyst utilization. A secondary benefit of the membrane design is the confinement of reaction products in the bulk stream on the active layer side, thus reducing the downstream separation needs

    Re-interpretation of ‘hummocky moraine’ in the Gaick, Scotland, as erosional remnants : Implications for palaeoglacier dynamics

    No full text
    Many glaciated valleys in Scotland contain distinctive, closely spaced ridges and mounds, which have been termed ‘hummocky moraine’. The ridges and mounds are widely interpreted as ice-marginal moraines, constructed during active retreat of mainly temperate glaciers. However, hummocky terrain can form by various processes in glacial environments, and it may relate to a range of contrasting glaciodynamic regimes. Thus, detailed geomorphological and sedimentological studies of hummocky surfaces in Scottish glaciated valleys are important for robust interpretations of former depositional environments and glacier dynamics. In this contribution, we examine irregularly shaped ridges and mounds that occur outside the limits of former Loch Lomond Readvance (≈ Younger Dryas; ~ 12.9–11.7 ka) glaciers in the Gaick, Central Scotland. These ridges and mounds are intimately associated with series of sinuous channels, and their planform shape mimics the form of the adjacent channels. Available exposures through ridges in one valley reveal that those particular ridges contain lacustrine, subglacial, and glaciofluvial sediments. The internal sedimentary architecture is not related to the surface morphology; thus, we interpret the irregularly shaped ridges and mounds as erosional remnants (or interfluves). Based on the forms and spatial arrangement of the associated channels, we suggest that the ridges and mounds were generated by a combination of ice-marginal and proglacial glaciofluvial incision of glaciogenic sediments. The evidence for glaciofluvial incision, rather than ice-marginal moraine formation, at pre-Loch Lomond Readvance glacier margins in the Gaick may reflect differences in glaciodynamic regimes and/or efficient debris delivery from the glacier margins to the glaciofluvial systems
    corecore