335 research outputs found
Holographic Symmetry-Breaking Phases in AdS/CFT
In this note we study the symmetry-breaking phases of 3D gravity coupled to
matter. In particular, we consider black holes with scalar hair as a model of
symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case
of a discrete symmetry, we show that these theories admit metastable phases of
broken symmetry and study the thermodynamics of these phases. We also
demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry
breaking at low temperature. The apparent contradiction with the
Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur
On Exact Symmetries and Massless Vectors in Holographic Flows and other Flux Vacua
We analyze the isometries of Type IIB flux vacua based on the
Papadopolous-Tseytlin ansatz and identify the related massless bulk vector
fields. To this end we devise a general ansatz, valid in any flux
compactification, for the fluctuations of the metric and p-forms that
diagonalizes the coupled equations. We then illustrate the procedure in the
simple case of holographic flows driven by the RR 3-form flux only.
Specifically we study the fate of the isometries of the Maldacena-Nunez
solution associated to wrapped D5-branes.Comment: 23 page
Non-conformal Hydrodynamics in Einstein-dilaton Theory
In the Einestein-dilaton theory with a Liouville potential parameterized by
, we find a Schwarzschild-type black hole solution. This black hole
solution, whose asymptotic geometry is described by the warped metric, is
thermodynamically stable only for . Applying the gauge/gravity
duality, we find that the dual gauge theory represents a non-conformal thermal
system with the equation of state depending on . After turning on the
bulk vector fluctuations with and without a dilaton coupling, we calculate the
charge diffusion constant, which indicates that the life time of the quasi
normal mode decreases with . Interestingly, the vector fluctuation with
the dilaton coupling shows that the DC conductivity increases with temperature,
a feature commonly found in electrolytes.Comment: 27 pages and 2 figures, published in JHE
Zero Sound in Strange Metallic Holography
One way to model the strange metal phase of certain materials is via a
holographic description in terms of probe D-branes in a Lifshitz spacetime,
characterised by a dynamical exponent z. The background geometry is dual to a
strongly-interacting quantum critical theory while the probe D-branes are dual
to a finite density of charge carriers that can exhibit the characteristic
properties of strange metals. We compute holographically the low-frequency and
low-momentum form of the charge density and current retarded Green's functions
in these systems for massless charge carriers. The results reveal a
quasi-particle excitation when z<2, which in analogy with Landau Fermi liquids
we call zero sound. The real part of the dispersion relation depends on
momentum k linearly, while the imaginary part goes as k^2/z. When z is greater
than or equal to 2 the zero sound is not a well-defined quasi-particle. We also
compute the frequency-dependent conductivity in arbitrary spacetime dimensions.
Using that as a measure of the charge current spectral function, we find that
the zero sound appears only when the spectral function consists of a single
delta function at zero frequency.Comment: 20 pages, v2 minor corrections, extended discussion in sections 5 and
6, added one footnote and four references, version published in JHE
Prevalence Rates of Mental Disorders in Chilean Prisons
PMCID: PMC371883
Finite Temperature Aging Holography
We construct the gravity background which describes the dual field theory
with aging invariance. We choose the decay modes of the bulk scalar field in
the internal spectator direction to obtain the dissipative behavior of the
boundary correlation functions of the dual scalar fields. In particular, the
two-time correlation function at zero temperature has the characteristic
features of the aging system: power law decay, broken time translation and
dynamical scaling. We also construct the black hole backgrounds with asymptotic
aging invariance. We extensively study characteristic behavior of the finite
temperature two-point correlation function via analytic and numerical methods.Comment: 38 pages and 5 figures, expanded discussions on correlator, one
mistake is fixed, modified discussion on shear viscosity, to appear in JHE
A boundary stress tensor for higher-derivative gravity in AdS and Lifshitz backgrounds
We investigate the Brown-York stress tensor for curvature-squared theories.
This requires a generalized Gibbons-Hawking term in order to establish a
well-posed variational principle, which is achieved in a universal way by
reducing the number of derivatives through the introduction of an auxiliary
tensor field. We examine the boundary stress tensor thus defined for the
special case of `massive gravity' in three dimensions, which augments the
Einstein-Hilbert term by a particular curvature-squared term. It is shown that
one obtains finite results for physical parameters on AdS upon adding a
`boundary cosmological constant' as a counterterm, which vanishes at the
so-called chiral point. We derive known and new results, like the value of the
central charges or the mass of black hole solutions, thereby confirming our
prescription for the computation of the stress tensor. Finally, we inspect
recently constructed Lifshitz vacua and a new black hole solution that is
asymptotically Lifshitz, and we propose a novel and covariant counterterm for
this case.Comment: 25 pages, 1 figure; v2: minor corrections, references added, to
appear in JHE
Effective AdS/renormalized CFT
For an effective AdS theory, we present a simple prescription to compute the
renormalization of its dual boundary field theory. In particular, we define
anomalous dimension holographically as the dependence of the wave-function
renormalization factor on the radial cutoff in the Poincare patch of AdS. With
this definition, the anomalous dimensions of both single- and double- trace
operators are calculated. Three different dualities are considered with the
field theory being CFT, CFT with a double-trace deformation and spontaneously
broken CFT. For the second dual pair, we compute scaling corrections at the UV
and IR fixed points of the RG flow triggered by the double-trace deformation.
For the last case, we discuss whether our prescription is sensitive to the AdS
interior or equivalently, the IR physics of the dual field theory.Comment: 20 pages, 3 figure
On Field Theory Thermalization from Gravitational Collapse
Motivated by its field theory interpretation, we study gravitational collapse
of a minimally coupled massless scalar field in Einstein gravity with a
negative cosmological constant. After demonstrating the accuracy of the
numerical algorithm for the questions we are interested in, we investigate
various aspects of the apparent horizon formation. In particular, we study the
time and radius of the apparent horizon formed as functions of the initial
Gaussian profile for the scalar field. We comment on several aspects of the
dual field theory picture.Comment: 31 pages, 17 figures; V2 Some figures corrected, minor revision.
arXiv admin note: substantial text overlap with arXiv:1106.233
Holography for chiral scale-invariant models
Deformation of any d-dimensional conformal field theory by a constant null
source for a vector operator of dimension (d + z -1) is exactly marginal with
respect to anisotropic scale invariance, of dynamical exponent z. The
holographic duals to such deformations are AdS plane waves, with z=2 being the
Schrodinger geometry. In this paper we explore holography for such chiral
scale-invariant models. The special case of z=0 can be realized with gravity
coupled to a scalar, and is of particular interest since it is related to a
Lifshitz theory with dynamical exponent two upon dimensional reduction. We show
however that the corresponding reduction of the dual field theory is along a
null circle, and thus the Lifshitz theory arises upon discrete light cone
quantization of an anisotropic scale invariant field theory.Comment: 62 pages; v2, published version, minor improvements and references
adde
- …