853 research outputs found
Scattering Experiments with Microwave Billiards at an Exceptional Point under Broken Time Reversal Invariance
Scattering experiments with microwave cavities were performed and the effects
of broken time-reversal invariance (TRI), induced by means of a magnetized
ferrite placed inside the cavity, on an isolated doublet of nearly degenerate
resonances were investigated. All elements of the effective Hamiltonian of this
two-level system were extracted. As a function of two experimental parameters,
the doublet and also the associated eigenvectors could be tuned to coalesce at
a so-called exceptional point (EP). The behavior of the eigenvalues and
eigenvectors when encircling the EP in parameter space was studied, including
the geometric amplitude that builds up in the case of broken TRI. A
one-dimensional subspace of parameters was found where the differences of the
eigenvalues are either real or purely imaginary. There, the Hamiltonians were
found PT-invariant under the combined operation of parity (P) and time reversal
(T) in a generalized sense. The EP is the point of transition between both
regions. There a spontaneous breaking of PT occurs
Exceptional Points in a Microwave Billiard with Time-Reversal Invariance Violation
We report on the experimental study of an exceptional point (EP) in a
dissipative microwave billiard with induced time-reversal invariance (T)
violation. The associated two-state Hamiltonian is non-Hermitian and
non-symmetric. It is determined experimentally on a narrow grid in a parameter
plane around the EP. At the EP the size of T violation is given by the relative
phase of the eigenvector components. The eigenvectors are adiabatically
transported around the EP, whereupon they gather geometric phases and in
addition geometric amplitudes different from unity
Chaotic Scattering in the Regime of Weakly Overlapping Resonances
We measure the transmission and reflection amplitudes of microwaves in a
resonator coupled to two antennas at room temperature in the regime of weakly
overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz
the resonator simulates a chaotic quantum system. The distribution of the
elements of the scattering matrix S is not Gaussian. The Fourier coefficients
of S are used for a best fit of the autocorrelation function if S to a
theoretical expression based on random--matrix theory. We find very good
agreement below but not above 10.1 GHz
Quantum Chaotic Scattering in Microwave Resonators
In a frequency range where a microwave resonator simulates a chaotic quantum
billiard, we have measured moduli and phases of reflection and transmission
amplitudes in the regimes of both isolated and of weakly overlapping resonances
and for resonators with and without time-reversal invariance. Statistical
measures for S-matrix fluctuations were determined from the data and compared
with extant and/or newly derived theoretical results obtained from the
random-matrix approach to quantum chaotic scattering. The latter contained a
small number of fit parameters. The large data sets taken made it possible to
test the theoretical expressions with unprecedented accuracy. The theory is
confirmed by both, a goodness-of-fit-test and the agreement of predicted values
for those statistical measures that were not used for the fits, with the data
May Irwin\u27s New Coon Song Hits / music by Ernest Hogan; words by Ben Harney
https://egrove.olemiss.edu/sharris_f/1004/thumbnail.jp
Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards
Using reciprocity, we investigate the breaking of time-reversal (T) symmetry
due to a ferrite embedded in a flat microwave billiard. Transmission spectra of
isolated single resonances are not sensitive to T-violation whereas those of
pairs of nearly degenerate resonances do depend on the direction of time. For
their theoretical description a scattering matrix model from nuclear physics is
used. The T-violating matrix elements of the effective Hamiltonian for the
microwave billiard with the embedded ferrite are determined experimentally as
functions of the magnetization of the ferrite.Comment: 4 pages, 4 figure
- …