7 research outputs found

    Brain state stability during working memory is explained by network control theory, modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia

    Full text link
    Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory entails brainwide switching between activity states. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Schizophrenia patients show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations

    Behavioural and functional evidence revealing the role of RBFOX1 variation in multiple psychiatric disorders and traits

    Get PDF
    Common variation in the gene encoding the neuron-specific RNA splicing factor RNA Binding Fox-1 Homolog 1 (RBFOX1) has been identified as a risk factor for several psychiatric conditions, and rare genetic variants have been found causal for autism spectrum disorder (ASD). Here, we explored the genetic landscape of RBFOX1 more deeply, integrating evidence from existing and new human studies as well as studies in Rbfox1 knockout mice. Mining existing data from large-scale studies of human common genetic variants, we confirmed gene-based and genome-wide association of RBFOX1 with risk tolerance, major depressive disorder and schizophrenia. Data on six mental disorders revealed copy number losses and gains to be more frequent in ASD cases than in controls. Consistently, RBFOX1 expression appeared decreased in post-mortem frontal and temporal cortices of individuals with ASD and prefrontal cortex of individuals with schizophrenia. Brain-functional MRI studies demonstrated that carriers of a common RBFOX1 variant, rs6500744, displayed increased neural reactivity to emotional stimuli, reduced prefrontal processing during cognitive control, and enhanced fear expression after fear conditioning, going along with increased avoidance behaviour. Investigating Rbfox1 neuron-specific knockout mice allowed us to further specify the role of this gene in behaviour. The model was characterised by pronounced hyperactivity, stereotyped behaviour, impairments in fear acquisition and extinction, reduced social interest, and lack of aggression; it provides excellent construct and face validity as an animal model of ASD. In conclusion, convergent translational evidence shows that common variants in RBFOX1 are associated with a broad spectrum of psychiatric traits and disorders, while rare genetic variation seems to expose to early-onset neurodevelopmental psychiatric disorders with and without developmental delay like ASD, in particular. Studying the pleiotropic nature of RBFOX1 can profoundly enhance our understanding of mental disorder vulnerability

    Brain state stability during working memory is explained by network control theory, modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia

    No full text
    Dynamical brain state transitions are critical for flexible working memory but the network mechanisms are incompletely understood. Here, we show that working memory entails brain-wide switching between activity states. The stability of states relates to dopamine D1 receptor gene expression while state transitions are influenced by D2 receptor expression and pharmacological modulation. Schizophrenia patients show altered network control properties, including a more diverse energy landscape and decreased stability of working memory representations

    Structural alterations in brainstem, basal ganglia and thalamus associated with parkinsonism in schizophrenia spectrum disorders

    No full text
    The relative roles of brainstem, thalamus and striatum in parkinsonism in schizophrenia spectrum disorder (SSD) patients are largely unknown. To determine whether topographical alterations of the brainstem, thalamus and striatum contribute to parkinsonism in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥ 4 and < 4, respectively, in comparison with healthy controls (n = 20). FreeSurfer v6.0 was used for segmentation of four brainstem regions (medulla oblongata, pons, superior cerebellar peduncle and midbrain), caudate nucleus, putamen and thalamus. Patients with parkinsonism had significantly smaller medulla oblongata (p = 0.01, false discovery rate (FDR)-corrected) and putamen (p = 0.02, FDR-corrected) volumes when compared to patients without parkinsonism. Across the entire patient sample (n = 99), significant negative correlations were identified between (a) medulla oblongata volumes and both SAS total (p = 0.034) and glabella-salivation (p = 0.007) scores, and (b) thalamic volumes and both SAS total (p = 0.033) and glabella-salivation (p = 0.007) scores. These results indicate that brainstem and thalamic structures as well as basal ganglia-based motor circuits play a crucial role in the pathogenesis of parkinsonism in SSD

    Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia

    Get PDF
    Working memory requires the brain to switch between cognitive states and activity patterns. Here, the authors show that the steering of these neural network dynamics is influenced by dopamine D1- and D2-receptor function and altered in schizophrenia

    Generative network models identify biological mechanisms of altered structural brain connectivity in schizophrenia

    No full text
    Background: Alterations in the structural connectome of schizophrenia patients have been widely characterized, but the mechanisms leading to those alterations remain largely unknown. Generative network models have recently been introduced as a tool to test the biological underpinnings of the formation of altered structural brain networks. Methods: We evaluated different generative network models to investigate the formation of structural brain networks in healthy controls (n=152), schizophrenia patients (n=66) and their unaffected first-degree relatives (n=32), and we identified spatial and topological factors contributing to network formation. We further investigated the association of these factors to cognition and to polygenic risk for schizophrenia. Results: Structural brain networks can be best accounted for by a two-factor model combining spatial constraints and topological neighborhood structure. The same wiring model explained brain network formation for all groups analyzed. However, relatives and schizophrenia patients exhibited significantly lower spatial constraints and lower topological facilitation compared to healthy controls. The model parameter for spatial constraint was correlated with the polygenic risk for schizophrenia and predicted reduced cognitive performance. Conclusions: Our results identify spatial constraints and local topological structure as two interrelated mechanisms contributing to normal brain development as well as altered connectomes in schizophrenia. Spatial constraints were linked to the genetic risk for schizophrenia and general cognitive functioning, thereby providing insights into their biological basis and behavioral relevance
    corecore