5 research outputs found

    Estimating Watershed Mercury Contribution to Lake Fort Smith State Park, Arkansas, USA

    Get PDF
    Mercury contamination associated with human activities poses global human health and environmental risks. A fish-consumption advisory has been in effect at Lake Fort Smith in central west Arkansas for more than a decade due to observed methylmercury concentrations in fish tissue. Lake Fort Smith is an important municipal drinking water supply and recreational resource. Water samples from the majority contributing tributary stream, Frog Bayou creek, were collected periodically, under differing hydrologic conditions in order to quantify the allochthonous mercury load delivered to the lake. Temperature, specific conductance, and turbidity data were collected and used to estimate dissolved organic carbon, methylmercury and mercury concentration in Frog Bayou creek. Dissolved organic carbon (DOC) concentration has been previously shown to have a strong correlation with total mercury (THg) and methylmercury (MeHg) presence and mobility in surface waters. Whereas a weak correlation was observed between DOC and THg concentrations (r2= 0.47), the relation between turbidity and THg was strong (r2 = 0.95), enabling use of turbidity as a proxy for the estimation of influx of THg in Frog Bayou creek. Analysis of water samples collected from streamflow indicated very little methylmercury contribution from the watershed, suggesting methylation of mercury is occurring predominantly within the body of Lake Fort Smith itself. Turbidity proved an inexpensive, real-time proxy for quantitative determination of mercury and methylmercury load in streamflow. This methodology provided better understanding of variations in mercury concentrations under differing hydrologic regimes and provided a tool for long-term watershed mercury load approximation to Lake Fort Smith

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore