407 research outputs found

    Parcellation of Visual Cortex on high-resolution histological Brain Sections using Convolutional Neural Networks

    Full text link
    Microscopic analysis of histological sections is considered the "gold standard" to verify structural parcellations in the human brain. Its high resolution allows the study of laminar and columnar patterns of cell distributions, which build an important basis for the simulation of cortical areas and networks. However, such cytoarchitectonic mapping is a semiautomatic, time consuming process that does not scale with high throughput imaging. We present an automatic approach for parcellating histological sections at 2um resolution. It is based on a convolutional neural network that combines topological information from probabilistic atlases with the texture features learned from high-resolution cell-body stained images. The model is applied to visual areas and trained on a sparse set of partial annotations. We show how predictions are transferable to new brains and spatially consistent across sections.Comment: Accepted for oral presentation at International Symposium of Biomedical Imaging (ISBI) 201

    Solving Satisfiability Problems with Genetic Algorithms

    Get PDF
    We show how to solve hard 3-SAT problems using genetic algorithms. Furthermore, we explore other genetic operators that may be useful to tackle 3-SAT problems, and discuss their pros and cons

    Image denoising with multi-layer perceptrons, part 1: comparison with existing algorithms and with bounds

    Full text link
    Image denoising can be described as the problem of mapping from a noisy image to a noise-free image. The best currently available denoising methods approximate this mapping with cleverly engineered algorithms. In this work we attempt to learn this mapping directly with plain multi layer perceptrons (MLP) applied to image patches. We will show that by training on large image databases we are able to outperform the current state-of-the-art image denoising methods. In addition, our method achieves results that are superior to one type of theoretical bound and goes a large way toward closing the gap with a second type of theoretical bound. Our approach is easily adapted to less extensively studied types of noise, such as mixed Poisson-Gaussian noise, JPEG artifacts, salt-and-pepper noise and noise resembling stripes, for which we achieve excellent results as well. We will show that combining a block-matching procedure with MLPs can further improve the results on certain images. In a second paper, we detail the training trade-offs and the inner mechanisms of our MLPs

    Computing Functions of Random Variables via Reproducing Kernel Hilbert Space Representations

    Full text link
    We describe a method to perform functional operations on probability distributions of random variables. The method uses reproducing kernel Hilbert space representations of probability distributions, and it is applicable to all operations which can be applied to points drawn from the respective distributions. We refer to our approach as {\em kernel probabilistic programming}. We illustrate it on synthetic data, and show how it can be used for nonparametric structural equation models, with an application to causal inference

    How to Explain Individual Classification Decisions

    Full text link
    After building a classifier with modern tools of machine learning we typically have a black box at hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the most likely label of a given unseen data point. However, most methods will provide no answer why the model predicted the particular label for a single instance and what features were most influential for that particular instance. The only method that is currently able to provide such explanations are decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to explain the decisions of any classification method.Comment: 31 pages, 14 figure

    The effect of technology on cable service to large, networked communities

    Get PDF
    Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2003.Includes bibliographical references (leaf 45).Delivering cable television to college and university campuses is maintained by a highly specialized industry which involves significant technological and logistical challenges. As campuses continue to contribute financial resources into improving their data networks, companies that provide campus cable services will need to offer services over data networks comparable to the existing services they offer over dedicated co-axial cable networks. This paper explores the business of providing cable services to university communities, describes the challenges these providers face and offers a glimpse into the future of IP-based desktop television.by Paul K. Harmeling.M.Eng.in Logistic

    Technical report on implementation of linear methods and validation on acoustic sources

    No full text
    • …
    corecore